You are currently browsing the archives for the access control category


Aluminum Door Latch Electric Strike Retrofit

Adams Rite 4501 Strike – from the Adams Rite web site.

Often we find ourselves involved in someone’s second thoughts about the use of a particular aluminum storefront type opening, wherein someone remembers that, hey, this opening needs access control.  Or, perhaps, the idea of access control comes to the opening later in its life.  In any case, the door company provided their usual solution for the customer’s parameters:  an Adams Rite latch with a lever handle or push paddle and the standard strike shown at right.  Extra credit:  What hand is the strike in the picture?*

From Adams Rite 4901 and 4902 install instructions

Above is a drawing of the prep for the 4901 double-hole strike.  The prep is 4-5/8 x the width of the door frame less 5/32 inch (.15 inches) as shown – or about 1-7/8 inches wide or so, depending on the actual depth of the frame measured from the stop to the edge.

The most common (non-electric) strike that comes with the Adams Rite latch is the 4901 as of this writing.  It was called the 4501 years ago, but it remains mostly the same:  4-5/8 inches tall, with two holes to accommodate left- or right-handed doors.  It comes with a plastic insert to block off the unused hole as shown in the picture of the 4501 strike above.

Common electric strike face plate heights are 4-7/8 inches, 6-7/8 inches , 7-15/16 inches, and 9 inches, and common widths range from 7/8 to 1-7/16 inches.  The problem lies in the differences.  None of these common sizes will fully cover the width of the 4901 prep, and after you’ve installed the strike there are ugly gaps left to fill in the aluminum.   You can use one of the following retrofit solutions to avoid this problem.

Retrofit Solutions

Trine 3458 electric strike, from the Trine web site.

Two companies have led the way in solutions to this very specific and often-occurring problem:  Trine and Adams Rite.  Trine has the quick fix and Adams Rite has the relatively heavy-duty fix.

Several years ago Trine redefined itself into a company of innovative solutions from a company that was much more focused on price point.  They went from being the cheapest guy on the street (though in many cases they still have the best price) to being a great problem-solver.  Case in point, the Trine 3458 electric strike (see pic at left), designed as a drop-in replacement for the Adams Rite 4901 with NO CUTTING.   This is a big deal for installers.

Despite its tiny body, the strike boasts an ANSI Grade 1 rating and 1200 lbs. of holding force.

The downsides:  not voltage selectable without a line conditioner, not field selectable for fail safe/fail secure, and keeper depth is 1/2 inch – fine for use with the Adams Rite 4510 latch which has a 1/2-inch throw, but could be an issue with the Adams Rite 4900 (5/8-inch throw) if the gap between the door and frame is less than the 1/8 inch it should be.

Adams Rite remains the premier manufacturer of locking hardware for aluminum storefront doors and frames as it has been for decades.  They have consistently worked to improve product quality and performance and they have succeeded.

FPK45 Retrofit Kit by Adams Rite

The Adams Rite solution to the 4901 retrofit problem is actually two-fold because it applies to two very different models of strikes:  the 7100 and the 7400.  For the 7100 series, Adams Rite offers the FPK45-00 face plate kit, and for the 7400 series they offer the FPK7445 face plate kit.  Installation of either one is largely the same:  enlarging the prep on the top and the bottom, and keeping the bottom screw mounting tab.

At right you can see the overall dimensions of the FPK7445 or FPK45 and how it aligns with the 4901 (or 4501) strike.  The mission is to line up the keeper of the electric strike to the active hole of the 4901.  You can see that enlarging the prep represents a significant amount of work.  You might well ask, “Why would I do this?”

First, as I mentioned, if you have a 4900 latch in the door and/or no gap between door and frame, you are going to want a deeper keeper than the Trine.  Like the Trine, the Adams Rite are also ANSI Grade 1 burglary resistant but offer a slightly higher holding force of 1500 lbs.  If you do not know the voltage in advance, the 7400 series is completely field selectable for a number of popular voltages – although one can get the Trine LC-100 line conditioner with the Trine strike and accomplish much the same thing.  Both the 7400 and 7100 are field selectable for fail safe or fail secure operation whereas the Trine are not.

In the industry there remains a lot of loyalty to the 7100 series.  In its time, the 7100 was a revolution in design and remains one of the most reliable and repairable electric strikes on the market today.





*The 4501 strike in the picture is left hand, or right hand reverse.

 

locksnsafescom

Your source for quality security products with superior service!

Field Reversing the Precision E2203 SVR Exit Device

The Precision E2203 is a Surface Vertical Rod exit device with a solenoid in the head that controls the outside lever trim.  Ordered complete with trim: part number is E2203 × 4908A, specify door width, finish, handing, fail safe or fail secure.  The right thing to do is to order it fail safe or fail secure and handed at the factory for your application. 

But… let’s say for the sake of this article that you ordered the device and did not specify handing or fail safe / fail secure. You might find yourself needing to field reverse the handing.  Here is what you need to know.

Handing

Changing the hand on the basic 2200 device is not very difficult, but changing the hand on the E2200 is fairly difficult, and requires skill, patience and … tape.
For the non-electric, purely mechanical version of this device, changing the hand is not as simple as it is with some other exit devices, for example, flipping the device over, but it is not all that hard to do.  Below are the directions for field handing excerpted from the 2200 Series installation instructions from the Stanley Precision web site.   Why they have arranged the steps to be followed in counterclockwise order is a mystery to me, but I am not here to judge, just inform.

At a glance you can see that there is some disassembly of the exit device head required to change the handing of the device. But when you add electrified trim control it complicates things a bit.

In the photo below you see the wires for the solenoid where they pass through the hole in the bracket.  That bracket is an integral part of the active head and it does not move.  However, the solenoid must be installed at the other end of the active head in order to interface with the working parts of the device and the wires are just long enough to allow it to be installed where it is.  There is no play in the wire that would allow the wire to remain where it is and yet allow one to move the solenoid.

 

 

 

In order to move the solenoid to the other side of the active head, one must either cut the wires (a nightmare, do not do it) or to completely disassemble the exit device, bar and all.

Why do you have to completely disassemble the exit device to pull the wire through?  Because it is taped to the baseplate of with a piece of filament tape that runs the length of the bar.  The tape must be removed to free the wire so you can pull it out through the hole in the bracket.

I could not find the directions for changing the hand of the E2203, but here is a drawing of the solenoid placement for the E2103 rim exit device taken from the installation instructions from the E2103 Kit.

 

 

Once you have pulled the wire through the hole, changed the hand of the head, taped the wire back down the length of the bar baseplate and reassembled the device, you’re done.

Below is a picture of the E2203 with handing freshly changed and the device reassembled and ready to install.

 





Like I said: order it fail safe or fail secure… AND ORDER IT HANDED.

 

locksnsafescom

Your source for quality security products with superior service!

Von Duprin QEL Kit Diversity

qelhdqel

QEL and HD-QEL modular conversion kits.

Von Duprin offers several versions of its QEL (Quiet Electric Latch retraction) conversion kits for its 33, 35, 98 and 99 series exit devices.  The variations are:

  • Modular (no baseplate)
  • Modular, with connectors (Molex)
  • Modular with hex dogging
  • Modular with hex dogging and connectors
  • With baseplate, specify 3-ft. or 4-ft.
  • With 3- or 4-ft. baseplate and connectors
  • With 3- or 4-ft. baseplate and hex dogging
  • With 3- or 4-ft. baseplate, hex dogging and connectors

None of the modular kits come with baseplates.  Kits with baseplates offer a small ease-of-installation advantage because replacing the whole baseplate is slightly faster than field installing the modular kit onto an existing baseplate.  Modular kits can be installed in either 3- or 4-ft. devices, so if you want to have one kit on your truck, a modular kit would be the logical choice.

Which modular kit should you get?  I would suggest the HD-QEL Modular Conversion Kit with Connectors.  If you don’t want hex dogging, you can use a blank cover plate or plug the dogging hole in the existing cover plate.  If you don’t want the connectors, you can cut them off.  And since at the time of this writing there is no price difference between a modular kit with connectors and/or hex dogging, or without connectors and/or hex dogging, you might as well get the one with all the bells and whistles.  As I indicated, you can always dial it back.

While Von Duprin recommends any of their PS900 series power supplies together with their 900-2RS relay board to run their QEL devices, many installers are using their own power supplies and this seems to be working just fine.   QEL draws a 1-amp inrush.  I recommend allowing 2 amps for each QEL on a power supply, and it is always good to isolate them on their own set of contacts in the power supply if possible, using a power distribution or relay board.   If these contacts can be protected by a fuses or circuit breakers, so much the better.   A regulated and filtered power supply is also a plus.





Unlike many power supplies, I am both unregulated and unfiltered … and I like it that way.

 

locksnsafescom

Your source for quality security products with superior service!

Choosing a Delayed Egress System: Self-Contained, or Built from Components?

Delayed egress is a process that delays unauthorized exit from a space while complying with NFPA 101 life safety code.  Use of this process is strictly regulated with the help of building inspectors and fire marshals across the United Sates.  With that in mind it is always a good idea to get your local AHJ (Authority Having Jurisdiction) on board whenever you are planning to install delayed egress on an opening.

When you beginning planning your delayed egress system you will find that many systems on the market are self-contained.    These could be delayed egress electromagnetic locks or electrified delayed egress exit devices.

Here are some examples of self-contained delayed egress maglocks:

  • SDC 1511S
  • Schlage Electronics M490DE
  • Dynalock 3101C

Here are some examples of self-contained delayed egress exit devices:

  • Detex V40 EE
  • Von Duprin Chexit
  • Sargent Electroguard

delayed-egress-anatomy
Almost all delayed egress systems are made up of the same components:

  1. Delayed egress timer and relay logic board
  2. Initiating Switch (to initiate the delayed egress process)
  3. Audible alarm
  4. Signage
  5. Reset switch
  6. Optional bypass switch
  7. Fire Alarm interface
  8. Power supply
  9. Locking device

Therefore it is possible to construct a custom delayed egress system from components.  Later I’ll talk about why you might want to choose a built-from-components delayed egress system instead of a self-contained one.   The following sections describe each part of a built-from-components delayed egress system.

Delayed Egress Timer and Relay Logic Board

This board is UL Listed and specifically designed to perform all delayed egress functions in compliance with life safety code.   Here are some examples of component boards for delayed egress:

  • Securitron XDT-12 or XDT-24
  • Seco-Larm SA-025EQ

The board is the brains of the delayed egress operation.  It has contacts to wire in switches for delayed egress initiation, fire alarm interface and system reset, timers to control nuisance and egress delay, and relays to control locks and notify external devices.

There are also delayed egress controllers that offer more features.  The following may include the delayed egress timer/relay board and some other required feature(s) such as the initiation switch or the audible alarm.

  • Alarm Controls DE-1
  • Security Door Controls 101-DE
  • Securitron BA-XDT-12 or BA-XDT-24

Initiating Switch

The switch that initiates the delayed egress process shares several characteristics with any request-to-exit switch.  To comply with life safety regulations it must require no prior knowledge to operate; it must require no more than one motion to operate; and it must be placed in relation to the door according to life safety standards in your local jurisdiction.  I think that the best possible initiation device is a mechanical push bar with a switch, such as the Adams Rite 8099-M or the Securitron EMB.  In a panic situation it remains obvious that to get out, one must push on the bar, and because it is mechanical it is unaffected by power outage.  If it is wired to open the contact when pushed, if the wires leading to it are cut it will initiate the delayed egress process.

In rare circumstances where it might be permitted, the locking device might be a fail safe electrified mortise lock that is locked on both sides, inside and out.  Then the initiation switch might be a palm switch next to the door.

Audible Alarm

The mandatory audible alarm sounds for 15 seconds before the delayed egress controller releases the locking device to allow exit.  It’s loudness must be between 81 and 88 decibels.  In some jurisdictions the alarm must be manually reset at the door; in others it may be self resetting via timer or door position switch.  Yet another reason to have a heart-to-heart talk with your local AHJ when designing your delayed egress system.

Signage

The wording on the mandatory sign must comply with life safety code.  There are minor variations in wording.  I suggest buying a sign that is part of a delayed egress system.  The sign that comes standard with the Von Duprin Chexit is readily available as a separate part.

Reset Switch

As mentioned in the “Audible Alarm” section above, a delayed egress system reset switch located at the door is mandatory in some jurisdictions.  Check with your local AHJ.  In some jurisdictions delayed egress systems are allowed to be reset by remote switch or other means, such as a door position switch.

Any kind of momentary contact switch will do the reset switch job, but delayed egress system reset switches located at the door almost always require some kind of security to prevent unauthorized resetting.   Standalone keypads or key switches are often used for this purpose.  Delayed egress systems can also be integrated into existing access control.

Optional Bypass Switch

Not required but often needed, the optional bypass switch allows authorized personnel to exit without triggering the delayed egress system.  Again, any momentary contact switch will do, but usually some security is required.  If you are using a keypad as the system reset switch and the keypad has more than one relay, you can program the second relay to be the bypass switch.

If access from the exterior side is required a bypass switch is required on that side.  Sometimes security is not needed from the exterior side.  In that case a simple momentary contact pushbutton will do the job.

Fire Alarm Interface

The mandatory fire alarm interface allows enables fire alarm panel to deactivate the delayed egress system immediately in the event of a fire alarm.  This is an integral part of the life safety code that allows a delayed egress system to exist.  Therefore, if your building does not have a fire alarm panel, without special permission from the local AHJ you cannot have a delayed egress system.

Power Supply

All delayed egress systems I have had experience with run on low voltage power that comes from a low voltage power supply.  Generally delayed egress systems require regulated and filtered power at 12 or 24 volts.  Delayed egress controllers draw very little current, but as will all electrically operated systems, the current draw of all attached devices must be taken into account when selecting a power supply.

Locking Device

The locking device must be electrically locked and fail safe from the egress (interior) side.  The most frequently used locking device in a component based delayed egress system is the electromagnetic lock.

Why Build a Delayed Egress System?

Why would you put together a delayed egress system from components when there are so many good self-contained systems?

  1.  To Save Money.  Piecing together a delayed egress system can be significantly cheaper than buying a self contained delayed egress system.
  2.  To take advantage of existing hardware.  For example, if there is already an electromagnetic lock on the door, adding the other components is relatively easy.
  3. Conditions at the door prohibit use of a self contained delayed egress system.  For example, door size or the presence of existing hardware may require the installer to seek a more creative solution.

 





Bottom line, unless you have a prison, you cannot lock ’em in.  Well, not without permission.  🙂

Compact Electric Strikes

A common problem with installing electric strikes is cavity depth – that is, how deeply you need to cut into the frame (or wall) so that the electric strike will fit. For most of the twentieth century electric strikes were, and most still are, designed without consideration for this factor. Instead they are designed for burglary resistance and durability.

VD6211

Von Duprin 6211 Electric Strike

Click on  the dimensional diagram of the Von Duprin 6211 electric strike at right.   You can see that its total depth is 1-11/16 inches. All of its internal parts are heavy duty, and it has a heavy cast body and a thick, finished face plate. Most of the parts are individually replaceable. To install the 6211 in a hollow metal door frame, the dust box must be removed and often material inside the door frame – sheet rock, wood, masonry, whatever – must be removed in order to accommodate the strike. If the strike must be installed in a grouted door frame the installer is in for perhaps an hour’s worth of work that may involve a masonry drill, a 2-1/2 lb. sledge hammer, a masonry chisel and safety goggles.

HES 5000 Dimensional DrawingsIn more recent years a new generation of low profile (shallow depth) electric strikes has become available, offering unprecedented ease of installation. The HES 5000 (illustration at left) was one of the first strikes on the scene to offer a depth of only 1-1/16 inches, and advertised that it could be installed without even removing the dust box from the frame. I have found it is usually much easier to knock out the dust box for wiring reasons, but it is true that the unit will fit neatly inside most original equipment dust boxes in hollow metal frames.

More recent offerings in the shallow depth electric strike department include the Trine 3478, the HES 8000 and the Adams Rite 7440, illustrations shown at the end of this article.  All are UL Listed burglary resistant. The HES 8000 offers 1500 lbs. holding force, the 3478 offers 1200 lbs. holding force and the Adams Rite, with its innovative double keeper design, offers 2400 lbs. of holding force.  The Trine 3478 offers an install with a very tiny lip cutout, and the HES 8000 offers the advantage of needing no lip cutout at all. Each of them fit in a strike cavity only 1-1/16 inches deep.

These strikes have revolutionized electric strike installation. Before, a good installer might install six or ten electric strikes in a day. Now a really fast installer might be able to install 20 or more, greatly reducing labor and other costs associated with installation.

What’s the Trade-Off?

None of the internal parts of these strikes are available. When these strikes break, you throw them away and buy new ones. Also they do not last as long. Whereas it is not unusual to see a Von Duprin 6211 or a Folger Adam 712 still in use after 10 or even 20 years, 6 years of service is a long time for a low profile strike. In ten years you might be replacing a spring or solenoid in a Von Duprin, but you might be installing your second or third low profile strike in the same door frame in that same amount of time. This is a small inconvenience.

Upon installing that third strike in the same hole, you probably will not yet have equaled the price of a single Folger Adam 712 or Von Duprin 6211. If price up front is the primary consideration, low profile is definitely the way to go. But if in about 12 years you are installing the fourth replacement strike in the same prep, those expensive, harder-to-install, heavy duty strikes start to look like a much better value.

strikethree

HES model 8000, Trine model 3478 and Adams Rite model 7440

Thank you.

Overview: School Security Hardware

11line

Sargent 11-Line Cylindrical (bored) Lockset

Security in our elementary and secondary schools has become much more important. Schools across the country are implementing lockdown procedures in case of emergency. Lockdowns are achieved through the use of locks, and new lock functions have been developed for use in concert with existing lock functions to answer the need for increased security.

Classroom Security Locks

A regular, traditional classroom function lock is unlocked and locked from the outside by key and the inside lever is always unlocked, allowing free egress. The problem with this function from a lockdown point of view is that, in order to lock the door, the teacher must open the door to lock it, exposing themselves and potentially their students to danger as they do so.

All major lock companies are either developing a classroom security function or assigning that application to one of their existing functions. Basically, the principal is this: in the event of an emergency the teacher can lock the outside lever handle of the classroom door from inside the classroom, thereby securing the safety of the students without endangering themselves. The inside lever remains unlocked allowing free egress. When locked, entry from the outside is by key only.

Some companies have developed classroom security function locksets in which the outside lever can be locked or unlocked with either the inside key or the outside key. This allows the teacher to continue to use the lock as a traditional classroom lock unless an actual emergency develops.

Click here for a complete description of classroom security function in a mortise lock.

 

Electric Lock Down Systems

Some school districts have opted to lock down their perimeter doors with delayed egress systems. Delayed egress systems are a way of locking exterior entrance doors from both sides while allowing for emergency egress.

Quest for the 24-Inch Exit Device with Electric Latch Retraction

Yale7100I had a lot of fun recently trying to meet a customer’s requirement for a 4-foot by 7-foot pair of doors in a hospital that needed to be fire rated and automated.   I found that Corbin and Yale (sister companies whose exit devices are almost identical) offer fire rated surface vertical rod exit devices with electric latch retraction that meet this need.   The installer will be able to put some kind of little power operator on each 24-inch leaf of this four foot pair and cram two fire rated surface vertical rod devices onto these same narrow leaves.  Doubtless it will look odd, but it will work.

Admittedly the whole idea is a bit dubious.  True, by having both leaves opened simultaneously by power operators will provide amply more than the minimum 32-inch clearance demanded by the American Disabilities act, but if anyone manually opens either leaf it certainly will not.

Sargent and Von Duprin offer 24-inch fire rated exit devices, but neither offer them with electric latch retraction.   It is unfortunately necessary to call these companies’ tech support lines in order to verify this information, since their price lists both show 24-inch possibilities without disclaiming the electric latch retraction option.  Neither the Sargent nor the Von Duprin has a note to say the 24-inch device is not available with electric latch retraction that I could see; if that is in fact the case, the buyer is left to beware the exit device order that bounces back because it was ordered with options that are mutually incompatible.

It’s good advice anyway to always call the manufacturer’s tech support whenever there is a question.  Waiting on hold is a lot better than storing thousand-dollar exit devices that didn’t work out on the job.

Note:  A reader named Rick writes in with this about Sargent electric latch retraction:  “Tom, I just stumbled across your site this evening, while doing a search for Fail Secure mag locks of all things (IR says there is one).  But I saw your latest article on latch retraction units and had to clarify the Sargent restrictions. These can be found within the catalog pages, specifically the page showing the 56 option (toward the back). It says:

         MinimumDoorWidths:
              -Wide Stile Door 28″
              – Narrow Stile Door 26″
Thank you, Rick, for this bit of info.  I should add that it is always good to check all the literature at your disposal for any information you are looking for.  Some manufacturers have more detail in their price list than in their catalog, and others vice versa.  Thanks again.


Securitron’s new PowerJump ICPT™ Inductive Coupling Power Transfer

Securitron’s new PowerJump ICPT™

Securitron’s new PowerJump ICPT™

The door hardware industry breathlessly awaits the debut of Securitron’s new PowerJump ICPT™ Inductive Coupling Power Transfer.  The PowerJump is Securitron’s miraculous new device that may put a significant dent in the electric through-wire hinge market.  I mean, why would you drill a half inch hole the width of a 36-inch door when you could install this little pair of black boxes on the lock side?

I downloaded the installation instructions from the Securitron web site to check out product attributes and characteristics.  The first thing I noticed, having spent much of my career working with wooden doors, that the Securitron PowerJump ICPT is a bit friendlier to a hollow metal door or frame install than it is to a wood door or frame install.  Because the body of the unit is almost the same size as the face, the installer must take great care to cut a very clean hole for the body so that the hole does not exceed the size of the face.  This can be a little tricky when using a speed bore bit (or auger bit as mentioned in the instructions) to drill the two deep holes for the mortise pocket before cutting in the face.

One trick I have used to use when installing mortise locks was to cut in the face first and get that nice and clean before drilling the holes.  I had good success with this because it gave me a very clear outline to stay within – much like coloring inside the lines with crayons in kindergarten.  Installing the PowerJump is a lot like installing a really small mortise lock, actually.  The face is the same width and a standard architectural grade mortise lock – 1-1/4 inches.

The PowerJump ICPT draws 500mA at 24 volts DC on the frame side, will transmit it across up to 3/16 inch of empty air and output either 250mA at 24VDC or 500mA at 12VDC on the door side.  500mA seems a little slim to be powering an electrified mortise lock.  Usually I like to see a bit of a cushion when it comes to current, so I would usually not power a device that requires 250mA at 24 volts DC, like a Sargent electrified mortise lock, with a power source that provided no more than the 250mA required.  I’d be a lot happier with a power source that has a capacity at least 1.5 times as great as the appliance being powered.

However, the average electrified hinge with 28-gauge through-wires only has a current rating of about 160mA and we have been powering electric mortise locks with these for decades.  Since I am not an electrical engineer I am not sure how that works, but it does.  I am also mystified by the science behind transmission of electrical current by induction.  Therefore, like most installers, I trust Securitron to produce yet another innovative product that works well.   I’ll be waiting to hear how installers like it when it is finally released.  I know I’ll hear about it one way or another.

Securitech Lexi Electrified Exit Device Trim

Great Problem Solver

The Securitech Lexi series retrofit exit device trim is available with a variety of back plates and adapters that allow it to be used with most major brands, including many surface vertical rod and concealed vertical rod exit devices.  Compatibility with a variety of vertical rod devices is a major plus.

I mean, anybody can electrify a rim exit device by simply installing an electric strike.  However, while it is possible to install an electric strike on a vertical rod device it rarely brings a good result.  First of all, in order to use an electric strike you have to first lose the bottom rod.  That just leaves one latch at the top of the door to provide all the security.  If it is a tall door or a flexible door – like an aluminum storefront door – you can pull the bottom open several inches with just that top latch holding it.  Add a little time and a little hinge sag and pretty soon you have no security at all.

The other solution is electric latch retraction, or electric latch pullback, as some manufacturers call it:  relatively expensive compared with a Lexi trim.  Also, electric latch retraction is a fail secure only solution when locking trim is used and therefore may be inapplicable to fail safe installs such as stairwells, unless passage function (always unlocked) trims are used.

I notice that right out of the box the Lexi is very self contained.  Other than a tiny box containing mounting screws, tailpiece operators, and a cylinder collar and cam, what you see is pretty much what you get.  It’s pretty hefty for its size – it is designed on the slim side so as to be usable on narrow stile as well as hollow metal or wood doors.   This does mean that the installer may have to be a little creative when replacing a larger exit device trim with the Lexi.

Installation instructions are easy to follow and short – only four pages, including the template. Something I would have liked to see in the instructions, but didn’t, was current draw.  If I am installing one of these, the number of amps it draws are not going to matter much to me.  But if I am installing twenty of them and want a centralized power source, now it’s an issue.  Yet it isn’t anything that an experienced low voltage specialist with a ammeter can’t find out in two seconds.

One of the great innovations I noticed right away is the rotation restriction clip that allows the installer to customize tailpiece rotation to the exit device.  I do not think that this is handled better by any other manufacturer.  Correct degree of rotation often determines whether a trim will work or not, and to have a trim that has degree of rotation so easily selectable is damn nice.

As mentioned in the sales literature, since Securitech’s Lexi trim is compatible with so many exit devices, if you have a facility with different brands of exit devices dispersed throughout, you can install access control and unify the exterior appearance at the same time.  And in addition to being versatile it is also durable.  Forcing the lever only causes its internal clutch to break away, and it can easily be set right by rotating it back the other way.

All in all the Securitech Lexi trim seems to be a well built, versatile problem solver.  I think you’ll find it useful in many access control installations.

The Keyway: Gateway to the Cylinder

The keyway is the shape of the keyhole of the lock cylinder into which the user inserts the key.  The keyway is designed to allow only keys of the correct shape to be inserted such that, when properly made, they will align the pin tumblers properly and operate the cylinder.  If you view a key from the tip, you can see how the shape of the key corresponds to the shape of the keyway.

 

 

 

 

 

The theory behind the keyway is to let only certain kinds of keys in and keep all others out, and keyways do this with varying amounts of success.  A variation on this idea is the “sectional” keyway system in which keys of slightly different keyways are allowed to “pass” into the cylinder keyway.  See the diagram of the Schlage hierarchy of keyways below:

The keyways shown at the bottom of the chart are designed to fit in only one keyway.  Unlike the keyways shown in the top two rows, actual locks have the keyways in the bottom row.  The keyways shown in the second row could be called sub-master sectional keyways because keys cut on blanks of these keyways will each pass several of the keyways in the bottom row.  Keys cut on the “L” keyway shown at the top of the chart will pass all of the keyways below it.  This keyway is designed to be used only at the level of Master or Grand Master key.

Unfortunately, some key duplicators use the “L” keyway key blanks to cut keys of any sectional keyway they may currently not have in stock.  This shoddy practice degrades the security of a master key section that depends on sectional keyways for security.

Restricted Key or Restricted Keyway?

Keys can be stamped with the words, “Do Not Duplicate” or “Property of [insert name of institution or government agency here],” and that may stop some honest people from getting the key copied.  The term, “restricted key,” however, usually means factory restricted keyway, and a factory restricted keyway can effectively inhibit unauthorized key duplication.

How Does a Factory Control a Keyway?

The most effective way to control unauthorized key duplication is to make the key blanks as difficult to get as possible.  Key blanks are like blank paper to a copier.  Imagine copy paper protected by a patent owned by a paper mill.  The only place to get the paper would be the paper mill.  Thus, one of the ways security hardware manufacturers protect a keyway is to protect it by patent law.  Part of that protection is aggressively pursuing anyone who violates the patent with lawsuits and other legal instruments to prevent patent infringement.

Another way factories protect keyways is to keep records of who is using what keyway and where.  Many companies have restricted key programs – Schlage Primus, Kaba Peaks and Medeco are a few examples.  Factories may keep signatures of end users on file.  In this case, requests for restricted products must be accompanied by a document that is signed with the correct signature or the factory will not release the product.

Some restricted keys come with an ID card that authorizes the card holder to get keys made.  This is less secure than key duplication that is controlled at the factory, but it is a step up from keys that anyone can get made at Home Depot.

Keyways and Key Bumping

In order to use a bump key to open a lock, the key bumper needs to have the right blank.  You cannot bump a cylinder with a bump key that has the wrong keyway.  It won’t go in.  Therefore, having a lock that has a somewhat rare keyway is a very easy and inexpensive way to make unauthorized entry by key bumping difficult.  Most of the people out there bumping locks open are not the brightest bulbs in the lighting fixture.  Challenge them with a hard-to-identify keyway and they will most likely be defeated.



Tags