You are currently browsing the Door Hardware Genius posts tagged: exit device


Compatibility Issues

What’s wrong with this picture?

When specifying door hardware I understand that it can be like being an kid in a candy store.  But like that kid, you may not be able to always get everything you want.   Sometimes “this” might not go with “that.” There are some examples that should be obvious, such as fire rated exit devices with cylinder dogging, since fire rated exit devices must positively latch each time they close without exception and any kind of dogging could prevent that.  But other combinations of options are less obviously incompatible.

One elusive combination of exit device options that pops up sometimes is delayed egress with electric latch retraction.  In most electric exit devices this is almost a contradiction in terms because they use the same mechanism for delayed egress as they do for electric latch retraction, except it works the opposite way.  For example, the Von Duprin Chexit uses the same kind of motor that the Von Duprin EL devices use, except that the Chexit motor pushes out on the latch mechanism while the EL motor pulls in.  What would be necessary I guess would be to build a little transmission so one could shift gears from push to pull to switch from delayed egress to electric latch retraction and back again.

But since no one has yet invented this miniature transmission neither the Sargent Electroguard nor the Von Duprin Chexit currently offer both delayed egress and electric latch retraction in the same device.  The only device I have encountered so far that does offer these two options together in the same device is Detex.  There could be others.  Check with individual factories to be sure.

Two options that are offered together in many, but not all exit devices, with varying degrees of availability, are cylinder dogging and electric latch retraction.   For example, Sargent offers cylinder dogging with electric latch retraction, but only when factory installed.   Von Duprin offers “Special Dogging” (SD prefix) with electric latch retraction.  In this case the effect of cylinder dogging is accomplished by a cylinder operated latch holdback feature in the center case of the device.  (Not quite the same as traditional cylinder dogging.)  Precision can offer cylinder dogging and electric latch retraction in the same device without complication because their electric latch retraction and cylinder dogging mechanisms happen in different sections of the rail altogether.  Corbin and Yale offer devices with cylinder dogging and electric latch retraction in the same device.   Yes, the electric latch retraction and cylinder dogging combo is all over the charts when it comes to availability.

 





As in all facets of life, when in doubt, contact your friendly door hardware genius.

 

locksnsafescom

Your source for quality security products with superior service!

Von Duprin QEL Kit Diversity

qelhdqel

QEL and HD-QEL modular conversion kits.

Von Duprin offers several versions of its QEL (Quiet Electric Latch retraction) conversion kits for its 33, 35, 98 and 99 series exit devices.  The variations are:

  • Modular (no baseplate)
  • Modular, with connectors (Molex)
  • Modular with hex dogging
  • Modular with hex dogging and connectors
  • With baseplate, specify 3-ft. or 4-ft.
  • With 3- or 4-ft. baseplate and connectors
  • With 3- or 4-ft. baseplate and hex dogging
  • With 3- or 4-ft. baseplate, hex dogging and connectors

None of the modular kits come with baseplates.  Kits with baseplates offer a small ease-of-installation advantage because replacing the whole baseplate is slightly faster than field installing the modular kit onto an existing baseplate.  Modular kits can be installed in either 3- or 4-ft. devices, so if you want to have one kit on your truck, a modular kit would be the logical choice.

Which modular kit should you get?  I would suggest the HD-QEL Modular Conversion Kit with Connectors.  If you don’t want hex dogging, you can use a blank cover plate or plug the dogging hole in the existing cover plate.  If you don’t want the connectors, you can cut them off.  And since at the time of this writing there is no price difference between a modular kit with connectors and/or hex dogging, or without connectors and/or hex dogging, you might as well get the one with all the bells and whistles.  As I indicated, you can always dial it back.

While Von Duprin recommends any of their PS900 series power supplies together with their 900-2RS relay board to run their QEL devices, many installers are using their own power supplies and this seems to be working just fine.   QEL draws a 1-amp inrush.  I recommend allowing 2 amps for each QEL on a power supply, and it is always good to isolate them on their own set of contacts in the power supply if possible, using a power distribution or relay board.   If these contacts can be protected by a fuses or circuit breakers, so much the better.   A regulated and filtered power supply is also a plus.





Unlike many power supplies, I am both unregulated and unfiltered … and I like it that way.

 

locksnsafescom

Your source for quality security products with superior service!

The Double Door Rim Strike – A.K.A. “The Pocket Ripper”

pocketripperOne of the hallmarks of bad hardware choices is the “pocket ripper” strike, used on a pair of doors when there is an inactive leaf with flush bolts or a vertical rod exit device and an active leaf with a rim exit device. Whenever I see this I think, “Cheap bastard,” because the only reason for this half fast solution is money and the desire not to spend it on doing the job right.

This lovely piece of hardware earned the nickname, “pocket ripper,” but hanging into the opening at a convenient height to catch the front pocket of a pair of trousers, resulting in egregious damage to said pocket and colorful language on the part of the victim.

What is the right way to secure a pair of doors? Vertical rod exit devices are the best. My second choice would be a mortise exit device with an open back strike and a vertical rod exit device on the inactive leaf. My third choice would be a mortise exit device with flush bolts on the inactive leaf.

Below are a couple of examples of the ‘pocket ripper.’   On the left is the classic Von Duprin 1609 strike and on the right an example from Ingersoll Rand in Europe.  The European version looks like it has better manners.

In the center we have the Hager 4921 strike that really looks like it could take out more than just a pocket if you catch it the wrong way.

image001image002hager

 

 

 

In addition, I find that often the rim latch stops dead before latching on the strike.  Also, depending on how you install the rim device, the latch may drag across the edge of the other leaf, scraping an ugly divot over time.  Yes, all in all a hardware choice to be avoided if you can.

 

Securitech Trident Multi-Point Deadbolt Exit Lock

Trident 4-point deadlocking exit device.

Simple and robust design helps to ensure security and longevity; single motion egress ensures life safety code compliance.  

Simple to order and to install, the Trident offers excellent security while preserving life safety.

The first thing I noticed when I unpacked the box was the small number of parts.  The second thing I noticed was how well all of these parts are labelled.  As I read the installation instructions I was struck by how easy Securitech had made the installation process, especially with the inclusion of a metal template to help get everything lined up just right.

I assume that the Trident is named for the three active bolts that secure the door on the lock side, but with the inclusion of the passive hinge side bolt it is actually a four point lock.  The hinge side bolt slides passively into its keeper whenever the door is closed.

Trident is a heavy device, so before installing it, make sure your door swings and closes properly and the hinges are in good shape.  I suggest using hinges with non-removeable pins so as not to rely solely upon the Trident’s hinge side bolt.  A stainless steel continuous hinge would be even better for both security and durability, if it is possible to use one.

Every locking mechanism of the Trident is through-bolted through pry-resistant steel plates, so casual attack using a pry bar would likely be fruitless no matter how much time the would-be burglar might have.  Each locking bolt is substantial and housed in a very sturdy mechanism.  Bending one of them would be difficult; bending all of them enough to gain entry would be almost impossible.  The main outside plate is impressive-looking with its Securitech logo and satin stainless steel finish, and since it is through-bolted to the head of the device in several

Photo by Tom Rubenoff

places, it’s pretty strong, too.

The weakest part of any muli-point locking device is the door frame.  Fully grouted (concrete filled) hollow metal frames hold up the best under attack.  At the very least, to have real security measures must be taken to ensure that the door frame cannot be either pulled out of the wall or bent away from the locking bolts.

To maximize security, I suggest not using the optional exterior key control with this device.  The presence of a key cylinder outside provides a target for burglars.

The Trident comes standard with a paddle that tells the user to push to exit and alarm will sound, but since the alarm is optional, this may be an empty threat.  Be sure to order your Trident with an alarm if you want one.

I was impressed with the workmanship evident in how the Trident is put together.  Everything worked super-smoothly and fit together perfectly.  The strong, simple design looks like it will provide many years of flawless service.  I highly recommend it for the back doors of stores, warehouses or factories or anywhere where a higher level of security may be needed.

Securitech Lexi Electrified Exit Device Trim

Great Problem Solver

The Securitech Lexi series retrofit exit device trim is available with a variety of back plates and adapters that allow it to be used with most major brands, including many surface vertical rod and concealed vertical rod exit devices.  Compatibility with a variety of vertical rod devices is a major plus.

I mean, anybody can electrify a rim exit device by simply installing an electric strike.  However, while it is possible to install an electric strike on a vertical rod device it rarely brings a good result.  First of all, in order to use an electric strike you have to first lose the bottom rod.  That just leaves one latch at the top of the door to provide all the security.  If it is a tall door or a flexible door – like an aluminum storefront door – you can pull the bottom open several inches with just that top latch holding it.  Add a little time and a little hinge sag and pretty soon you have no security at all.

The other solution is electric latch retraction, or electric latch pullback, as some manufacturers call it:  relatively expensive compared with a Lexi trim.  Also, electric latch retraction is a fail secure only solution when locking trim is used and therefore may be inapplicable to fail safe installs such as stairwells, unless passage function (always unlocked) trims are used.

I notice that right out of the box the Lexi is very self contained.  Other than a tiny box containing mounting screws, tailpiece operators, and a cylinder collar and cam, what you see is pretty much what you get.  It’s pretty hefty for its size – it is designed on the slim side so as to be usable on narrow stile as well as hollow metal or wood doors.   This does mean that the installer may have to be a little creative when replacing a larger exit device trim with the Lexi.

Installation instructions are easy to follow and short – only four pages, including the template. Something I would have liked to see in the instructions, but didn’t, was current draw.  If I am installing one of these, the number of amps it draws are not going to matter much to me.  But if I am installing twenty of them and want a centralized power source, now it’s an issue.  Yet it isn’t anything that an experienced low voltage specialist with a ammeter can’t find out in two seconds.

One of the great innovations I noticed right away is the rotation restriction clip that allows the installer to customize tailpiece rotation to the exit device.  I do not think that this is handled better by any other manufacturer.  Correct degree of rotation often determines whether a trim will work or not, and to have a trim that has degree of rotation so easily selectable is damn nice.

As mentioned in the sales literature, since Securitech’s Lexi trim is compatible with so many exit devices, if you have a facility with different brands of exit devices dispersed throughout, you can install access control and unify the exterior appearance at the same time.  And in addition to being versatile it is also durable.  Forcing the lever only causes its internal clutch to break away, and it can easily be set right by rotating it back the other way.

All in all the Securitech Lexi trim seems to be a well built, versatile problem solver.  I think you’ll find it useful in many access control installations.

Multi-function Doorways, Part Two

Secured stairwell doors are among the most basic multi-function door applications.  In most jurisdictions they must (usually)* be both unlocked and positively latched in the event of a fire.  Unlocked so that if a person, fleeing into the stairwell during a fire, finds the stairwell full of smoke, they can safely exit the stairwell.  Positively latched so that the door will remain latched closed against the spread of the fire.

Until there is a need for access control, a passage function mortise lock, cylindrical lock with UL listed latch or exit device with passage function trim are fine.  The application begins to get interesting when the need arises to lock a stairwell door.

Right up front, electric strikes are out of the question because of the unlocked/positive latching requirement mentioned above.   It is not possible to positively latch a door when the electric strike is unlocked.  There is no such thing as a fire rated, fail safe electric strike.  If you configure a fire rated electric strike to be fail safe it voids the fire rating.

Since electric strikes are unusable for this application, that leaves either electric locks or electromagnetic locks.  Both have advantages and disadvantages.  Fail safe electric locks positively latch whereas mag locks allow the installer to us the existing hardware on the door to accomplish positive latching.  Electric locks require running wire through the door and some means of getting the wire from the frame into the door, such as an electric through-wire hinge.  Not all inspectors like electromagnetic locks, so before you install them be sure to check with your local Authority Having Jurisdiction (AHJ ) – that is, Fire Marshal or Building Inspector.

If the stairwell door already has a fire rated exit device installed, there is probably a fail safe electrified trim available for it.  Once again, this means an electric through-wire hinge or other power transfer device would be required.  Sometimes existing exit devices are incompatible with the electrified trims available for that brand and model of device.  If that is the case, the exit device might have to be replaced with one that is compatible with electrified trim.

Alternatively, there are after market request to exit (a.k.a. RX) switches available for most exit devices.  One could be used to release an electromagnetic lock on the stairwell door.

Usually it is required that all electric locking devices on stairwell doors be controlled by the fire alarm panel.  When the fire alarm is in a state of alarm, it unlocks all the stairwell doors.  Two conductor wire is run from the fire alarm panel contacts to a special fire alarm relay in the power supply that powers the electric locks on the stairwell doors.  The alarm panel opens the circuit, causing the state of the fire alarm relay to change, thus powering down the fail safe locks and thereby leaving them unlocked.

An important detail:  technically speaking, according to most building and life safety codes, fire rated doors can only be modified in a fire rated shop.  Therefore if you field cut a raceway for an electric wire through the cross members of the door, for example, you are probably voiding the fire rating.  I have never heard of anyone being called on this, but it is good to keep in mind.  Just like it is good to keep in mind that the AHJ has total authority over what you can or can’t install.  Best make sure you’re on the same page with her or him, otherwise they do have the power to make you remove what you installed and replace both door and frame to repair the damage.

Happy hardware and good luck to you.


*Some jurisdictions specify that not all stairwell doors need be unlocked in the event of a fire, only certain doors.  For example, I have known some places where code was the door had to be unlocked at every fourth floor.  Check with your local AHD to find out what the rules are for your location.


Multi-function Doorways, Part One

As seen in Doors and Hardware Magazine.

Whenever something is invented, humans find more uses for it.  This is certainly true for door automation and electric locking.  It was not long after people realized a door could be unlocked remotely using an electric strike and a door could be opened automatically using a power operator (automatic door opener) that they began using these devices together.   Of course this combination of devices was soon interfaced with intercoms.  Exit devices with electric latch retraction and electromagnetic locks were thrown into the mix, as well as access control, delayed egress and/or security interlock systems.  Any of these systems alone is sufficient to complicate an installation, but when you start to use several on one opening, that’s when things really start to get interesting.

A hospital can be one of the best places to run into a doorway that needs to perform many functions (pun intended).  Hospitals seem to have more varied reasons to keep different people out at different times, or to let them in or out by different means.  In addition to standard life safety and security issues, hospitals also have to anticipate the needs of patients who may be under the influence of medication and/or mental disorders and/or have physical limitations.  Some patients must be kept inside for their own safety while all patients must be able to exit swiftly and safely in the event of a fire.

Let’s use as an example a hospital emergency ward entrance used primarily by ambulance drivers.  The hospital wants only ambulance personnel and the security guard  to be able to activate the power operator, and to control access by use of a remote switch operated by the security guard  for the general public and an access code by hospital employees (other than ambulance personnel).

Since it is a pair of doors, concealed vertical rod exit devices are the most efficient, safe and secure way to lock them and provide reliable free egress in the event of an emergency.  However, since there is a power operator involved, these devices must be equipped with electric latch retraction; and since use of the power operator was to be limited, a second electric means of opening the door would be required.

A simple way to solve the problem of the second means of unlocking is by using electrified exit device lever trim with one of the concealed vertical rod exit devices.  Persons not requiring the power operator can get in by using the access control, or the security guard  can “buzz” them in using one of two remote buttons.  Because there will be two means of unlocking the door electrically, the security guard  will need a small desk unit with two buttons:  one that activates the power operator and electric latch retraction and one that activates the electric exit device trim.

Below is an amateur wiring diagram (made by me) of how, basically, the system works.

Central to the concept is an access control device with two relays and a request to exit input.  This allows several of the connections to be made through the access control system.  If the access control system on site does not provide more than one relay, the same functions can be accomplished by using additional relays in the power supply.

The system as shown in my illustration above works like this:

Ambulance personnel activate the power operator using the access control system.  The access control system signals the power operator via contact closure in Relay #1.  The power operator triggers the relay in the power supply to retract the latches of the exit devices, then opens the door.

Other authorized hospital personnel use the access control system to unlock the lever trim.  The access control system changes the state of Relay #2, triggering the relay in the power supply to unlock the trim.  They turn the lever, pull the door open and walk in.

Injured people arrive on foot at the Emergency Room entrance.  The Security Guard sees them (or is notified by intercom, not shown) and lets them in by pressing the red button, activating the power operator, or by pressing the green button that unlocks the exit device trim.

There exist many possible variations of this system.  Knowledge of access control systems and door hardware are required, but the most important principal in play is the use of contact closure to signal multiple devices.


Exit Device Checklist

See also Exit Device Basics

Here are a few questions you need to be able to answer before you order exit devices:

  • Is the door made of wood, hollow steel, Fiberglas, aluminum and glass, or all glass?
  • Is the door is fire rated or non-fire rated?
  • Door width if single door or pair of doors with center mullion?
  • Door width and height if for a pair of doors without mullion?
  • Door thickness?
  • Exit device finish?
  • Will this be an exit-only device, or will there be outside trim?
  • If there is outside trim, what function is it?

It will save you time and aggravation if you know the answers to these questions before you call your hardware vendor.

You may also want one or more of these or other mechanical options:

  • Cylinder dogging (not available on fire rated devices)
  • Less bottom rod (for vertical rod exit devices)
  • Double cylinder (trim locked or unlocked from inside secured space)

There may also be electrified options:

  • Does the exit device need to have electrified trim?  If so, fail safe or fail secure?
  • Does the exit device need to have electric latch retraction?
  • Does the exit device need to have push pad or latch monitor switches?
  • Do you need a delayed egress exit device?

Save time and money by gathering the necessary facts before shopping for exit devices.

What’s Hot in Door Hardware

A couple of new innovative products have recently caught my attention.  Here they are:

Security Door Controls (SDC) Model LR100VDK:

Field Installed Electric Latch Retraction Retrofit Kit for Von Duprin Exit Devices

 

 

 

 

 

 

 

 

This product is available now.

http://www.sdcsecurity.com/whatsnew2.aspx#lr100

The mere 450mA inrush powering Security Door Controls’ new electric latch retraction retrofit kit is attractive enough.  Its compatibility with all Von Duprin touch bar style devices may make it just about irresistible.   Optional request to exit switch kits are available.  The unit is usable for access control and electric dogging applications.

The small inrush is huge.  (I always wanted to say that.)  High inrush electric latch retraction requires special, expensive power supplies.  Not so with the LR100VDK.  Your average regulated and filtered 1-amp 24vdc power supply will do nicely, thank you.

Another great aspect of this kit is that it is compatible with the Von Duprin 22 series exit device. So now, for relatively short money you can give a customer electric latch retraction in a decent quality exit device.

HES Model 8500 Electric Strike for Mortise Locks


http://www.hesinnovations.com/en/site/hesinnovations/Products-startpage/?groupId=141798&productId=764670

This product is due to become available by the end of August, 2011, but we’ll see.

Hanchett Entry Systems’ new lipless electric strike solution for mortise locks.

Installing an electric strike to release a mortise lock will be much easier with the HES 8500 since no cutting of the face of the frame is necessary.  Below is an illustration showing the difference between the HES 1006 standard electric strike for mortise lock and the new HES 8500.

HES 1006 prep for hollow metal

HES 8500 door prep for hollow metal - look ma, no lip!

 

 

 

 

 

 

 

 

 

 

 

 

This is not a new idea, but installers seem excited about the prospect of having an alternative to the Securitron UnLatch, which has been around for quite some time.  The Unlatch model that the HES 8500 will compete with will be the Securitron MUNL.

Of course, the advantage the MUNL currently enjoys is that, unlike the 8500, one can actually buy an MUNL.  Comparatively, the Securitron requires a door frame depth of about 1-7/8 inches whereas the the 8500 will require about 1-3/8 inches.  The 8500 will draw 240mA at 12 volts DC and 120mA at 24 volts DC and draws no inrush current.  The MUNL has an inrush of 2 amps at 24vdc or 4 amps at 12vdc and an operating current of 600mA at 12vdc or 300mA at 24vdc.  One important result of the lower current consumption of the 8500 will be that instead of the 4 amp 12vdc or 8 amp 24vdc power supply necessary for each MUNL, one 8 amp 24vdc power supply will theoretically power as many as perhaps 60 of the new HES 8500.  Of course then, factors like wire run will come into play, but still.

Another positive attribute will be that the 8500 will be field selectable for fail safe or fail secure whereas the MUNL requires an additional module to make it fail safe.

All in all, the 8500 seems that it will be a better choice all around.  We’ll just have to wait and see how it performs in the field after it becomes available at the end of August 2011.

Low Voltage Detective Work

 

Finding the Current Drop

 

As electric locking systems become increasingly complicated, troubleshooting these systems has also become more complex.  Yet certain basic principles always apply.

Case in point, a customer had access control on a stairwell door using a fire rated mortise exit device with an electrified mortise lock.  The solenoid in the mortise lock had burned out twice and the third one, newly installed, was already too hot to touch.  Granted, a solenoid operated fail safe device used in a continuous duty application will get warm, but it should not get too hot to touch.  So they called me to help them figure out what was going on.

To find the problem, I first listed the possibilities:

  1. They had gotten three defective solenoids in a row
  2. The power supplied is the wrong voltage – if the voltage was either too high or low, that would cause the solenoid to heat up
  3. The current supplied is inadequate – the solenoid used 330mA.  If it were being supplied with only 150mA, for example, the solenoid would heat up.

We determined that 27 volts DC was available at the door to power the 24 volts DC solenoid – perfectly acceptable – and we all felt that it was rather unlikely that they had received three defective solenoids in a row.  So that left current drop.  Where was the current going?  What was preventing it from getting the current it needed?

The access control tech on site could not determine whether the solenoid was getting enough current at the door by using a meter (for whatever reason) so we traced the current back through the line.

The power supply was a 6 amp, 24 volts DC power supply that had an output board with 8 fused outputs.  If all were in use, then a max of 750mA should be available from each output, provided they all were carrying the same amperage load.  We determined that four of the outputs were being used:  three were used to power electric strikes at 300mA and one was used to power the electric mortise exit device at 330mA.  The sum of the current draw for all devices attached to the power supply was therefore about 1.2 amps – well within the power supply’s capacity.  Therefore the power supply size was not the problem.  The technician measured the output from the contacts that were connected to the mortise lock and found that they were outputting correct voltage and current.  Therefore the output board was not the problem.

Assured by the technician that the wire run between the power supply and the mortise lock was less than 100 feet and that 18 gauge wire was used, I knew that the wire run was not the problem.  I asked how power got from the door frame through the door and into the mortise lock.  The technician responded that power transfer was accomplished by use on an electric hinge.

Typical wire gauge in an electric hinge is 24 gauge – a thin wire to be sure, but since power only needs travel a few inches through it, hinge wire gauge is usually not a problem.  But this electric hinge had its own 3-foot wire lead threaded through a raceway in the door to the mortise lock.  Whereas a few inches of 24 gauge wire might not be a problem, I reasoned, three feet of it might be a problem.  We talked about it briefly and then agreed that they would give it a try.

To my dismay, they called back two hours later – after they had replaced the wire running through the door with 18 gauge wire and let the mortise lock run on it for a while – and let me know that this did not work either.

The answer finally came when I asked how the electric mortise lock was connected to access control and was told there was a controller in a box above the door.  The controller used a form C relay to turn the electric mortise lock on and off.  I suggested that the technicians check the relay to make sure it was working properly.  When they did they discovered that the electric mortise lock had been connected in series with another device.  This other device – whatever it was – drew enough current to deprive the mortise lock of the current it needed to operate without burning up.  Problem solved.

The moral of the story is that, yes, access control has only gotten more complex as time goes by, but by using simple, logical methods a good technician and figure out and repair most problems.  So stick with it and keep asking questions until you ask the right one.

 

And good luck!

 

 


Tags