You are currently browsing the Door Hardware Genius posts tagged: hardware specification


Experiencing the New Von Duprin Chexit

Chexit door label from Chexit installation instructions.

Von Duprin Chexit door label from Chexit installation instructions.

Last year Von Duprin began shipping Chexit self-contained delayed egress exit devices that are motorized instead of solenoid driven.  Since they are motorized, the new Chexits draw less current and will probably be more reliable than the previous solenoid-driven version. This means a less serious, less expensive power supply, less need for high capacity, high gauge, high cost wire and greatly increased workable wire run distances – all good things.

The new Chexit will do everything the old Chexit did, including release of the outside lever trim when the external inhibit function is activated by access control or another external switch.  That remains a way to get access control out of a Chexit by simply adding a blank escutcheon or other unlocked outside trim to the Chexit exit device.

As of this writing Exit-only function Chexit devices were being shipped less the part number 040193-00 cable used to connect the E996L to the Chexit PC board.  The cables are only provided if you order the Chexit from the factory with trim, but that is okay as long as you want to use no trim or non-electric trim.  Electrified trim is a means to provide fail secure access control from the trim side, so if the fire alarm goes off and powers down the Chexit, the fail secure electrified trim will stay locked.  Entry can still be gained by key.

On another note, recently I was involved in an application where the installer was replacing a mortise exit device and wanted delayed egress from the push side and free ingress from the pull side.  Luckily it was a mortise device, so all I had to do was provide a Chexit mortise exit device with blank escutcheon (passage function) trim because THE MORTISE LOCK ACTS INDEPENDENTLY FROM THE CHEXIT ON THE TRIM SIDE. Cool. 🙂

Bear in mind that  the Chexit remains active while people are using the passage function trim to get in, so if they happen to depress the touch bar, say by bumping it up against the wall for two seconds, they may activate the Chexit alarm.   Von Duprin Tech Support suggested a palm switch on the trim side to activate the inhibit circuit in the Chexit while a person enters from that side.

 





It was fun, easy, and I looked like a … Hardware Genius.

The Pressure’s On

balloonPositive Pressure Issues

Sometimes doors are required to perform conflicting functions simultaneously.  For example, in order to comply with the American Disabilities Act a particular door may be restricted to a door closer that requires as little as five pounds of opening force.  This same door may be required to lock automatically without fail.

One solution could be to use a non-hydraulic, motorized power operator (automatic door opener) instead of a standard hydraulic closer.  Since many non-hydraulic power operators do not depend on a spring for closing force it is possible for them to have an ADA compliant opening force and also exert a closing adequate to close and latch the door.  Most power operators that fit this description must be installed by AAADM certified installers.

Without the magic fix of the non-hydraulic power operator, all a door technician can do is fine tune the door so that it swings perfectly and is perfectly balanced; fine tune the locks, hinges and door closer to peak performance under the opening force restriction; and pray there isn’t a positive pressure or wind issue.

One caveat:  deprived of electricity, a non-hydraulic power operator will neither open nor close the door.

Positive pressure HVAC operation is a prime example of how the intended function of a door can be impeded or prevented by the normal operation of building infrastructure.   Positive pressure in a building is accomplished by using the HVAC system to add air from outside the building to the air that is already in the building.  As with a balloon, the added air pushes outwards in all directions.  When an exterior door is opened, air flows out through the open portal, acting as an invisible barrier that keeps outside air out.

Unfortunately positive pressure acts like a constant wind pushing on the inside of the exterior doors.   Since almost all exterior doors swing out, the net effect of positive pressure HVAC on exterior doors is that of blowing to doors open and/or preventing them from closing.

The non-hydraulic power operator idea discussed above can usually solve the problem, but I have had some success adjusting door closers to compensate for positive pressure situations.  I have found that a slow swinging speed followed by a fast latching speed will often accomplish the mission.  This solution, however, can create other problems such as creating a wider time window for unauthorized persons to enter while the door is still shutting, for example.

I have found no reliable fix for an opening subjected to positive pressure that must comply with ADA reduced opening force requirements; however, since positive pressure on out-swinging doors inherently reduces opening force, there is some hope.

In the best of all worlds, door hardware technicians and HVAC technicians work together to coordinate positive pressure ventilation needs with security and ADA compliance requirements.

Excerpt from Tom’s article “Butcher, Baker, Door Hardware Technician… ” published in the February 2015 issue of Doors and Hardware Magazine, magazine of the Door Hardware Institute.

How to Order Door Hardware for Small Commercial Projects

This article is for facilities or property managers who need to buy hardware for change-of-use projects in which there is no architect involved.

On larger projects that involve build-outs or new construction, along with the doors architects usually specify the door hardware, often with the help of an Authorized Hardware Consultant (AHC).  On smaller projects wherein the services of an architect are otherwise not required, hardware choices often fall to you:  the facilities or property manager or owner.  This article will provide language and concepts that will facilitate communication between you and your hardware dealer and/or installer.

Get Good Advice

If you do not already have one whom you do business with, choose a qualified hardware installer.  I may be a little biased, but I think locksmiths make the best hardware installers.  Some contractors also have hardware installation specialists on staff who are qualified to do the work.  Experienced and qualified hardware installers can help answer your questions as you tackle this project.

Specifying the wrong hardware can be expensive, so your hardware choices can be very important.  In addition to your hardware dealer or qualified installer, your local building inspector and fire marshal can be invaluable sources of information.  They will be able to tell you, for example, if a particular door needs panic hardware and/or fire rated hardware.  Your qualified installer should also be able to help with these choices, but if there is ever a choice you are not sure of you can always consult these governmental authorities.

 

Know Your Doors

Number Your Doors 

Assign each door a number.   Stick a label with the door number on every door on the edge on the hinge side, just above the top hinge.   List the door numbers across the top of a spreadsheet.   Under each door number enter the existing hardware, door dimensions and other characteristics as discussed in the following sections.

Existing Hardware

Do a survey of the property and catalog every door, hinge, kick plate, door closer and lock.  Base your notes on the following categories of information in this article and you should be able to answer most questions your hardware installer may have without them having to visit.  You get two benefits from this:

  • Knowledge of what you have and what you want
  • Savings of time and therefore, money

List every hardware item on every door.  Be sure to open the door and look on both the inside and the outside.  Below is an illustration of some of the different kinds of hardware one may find on a door.

hardwaredoors

Don’t forget the wall or floor stops.

You may ultimately decide to reuse your existing hardware if it suits your intended use of the space and is in good working order.  You may need to rely on your hardware installer to help you determine what may be kept and what should be discarded.

Fire Rated vs. Non Fire Rated

Fire rated doors are designed to resist the spread of a fire within a structure.  Fire rated doors get their fire rating from Underwriters Laboratories and have a UL label on them showing the fire rating.  Only fire rated hardware can be used on fire rated doors if the fire rating is to be maintained and your project is to pass inspection.  Interior stairwell doors are always fire rated.  Other interior doors often may be fire rated as well.  Check all doors for fire labels; consult your local Fire Marshal if you are unsure.

thicknessLocks for fire doors are UL listed as such and must positively latch whenever the door is closed.  Without exception, fire rated doors must be closed and positively latched in the event of a fire.   Therefore fire rated doors always have a door closer and some kind of UL listed latching device, such as a mortise lock, fire rated exit device or UL listed cylindrical lock.

Non-fire rated exit devices may have a “dogging” mechanism that keeps the push bar pushed in so that the latch(es) remain retracted.  Usually this is apparent as a small hole in the bar where a hex key can be inserted to dog the device down.  Sometimes the dogging mechanism is operated by a key cylinder.  If your device is equipped with any kind of dogging it is not a fire rated device.

Fire rated doors must be equipped to self-close.  This must almost always be accomplished through the use of a door closer.
Exterior doors are not usually fire rated, or if they are labelled may not have to comply with the positive latching rule.   Consult your local fire marshal or building inspector if you have any question.

Failure to comply with fire and life safety code can have expensive consequences so use extra care.

doordimensionsDimensions

Accurate dimensions of door and frame are vital when choosing door hardware.  Here are some common door measurements:

  • Width
  • Height
  • Thickness
  • Reveal
  • Stile width
  • Rail height

Door Width and height can be important when you are choosing a door closer or an exit device, and vital in complying with the American Disability Act (ADA) that requires openings to provide 32 inches of passage clearance.   This includes the space occupied by the open door.

reveal

The Reveal.

Door thickness can be important when ordering door closers, exit devices and locks.  Reveal dimension is important for certain types of door closer installations.

As shown in the illustration below, the stile is the vertical part of a door that is made up of the components, stile and rail, whereas the rail is the horizontal part.  Most stile and rail type commercial doors are aluminum, although more and more of them are Fiber Reinforced Plastic.

 

alumstileandrail

Stile width is important when ordering locks or exit devices.  Rail height is important when ordering door closers or electromagnetic locks.

Photos of doors are also good to have, but are not a substitute for accurate measurements.  

Handing

The “hand” of a door describes the direction it swings in relation to its hinges.  If you imagine yourself being the hinge, and your right hand is on the door while your left hand is on the frame (like the person in the picture), the door is Right Hand.

handingwithhands

His right hand shows that this is a right hand door.

 

T-handing

Doors are always Left Hand (LH) or Right Hand (RH) however some locks can be Left Hand, Right Hand, Left Hand Reverse (LHR) or Right Hand Reverse RHR).   “Reverse” means that the locked side of the door is the pull side.  If a ‘reverse’ handed lock is installed on a Right Hand door, the lock is said to be Left Hand Reverse.  If it is installed on a Left Hand door it is said to be Right Hand Reverse.

All exit devices are reverse handed.

Location

The location of a door affects the hardware that can be installed on it.  For example, locking exterior doors in commercial facilities designed to accommodate a given number of people are usually required to have panic hardware – that is, an exit device with a push bar that goes across the door, the actuating portion of which must measure at least half the width of the door.   Most exit devices easily comply with this requirement.

All life safety code compliant buildings have a “path of egress,” that is, a clearly marked escape route in case people need to get out of the building in a hurry if, for example, the building is on fire.   Electrically lit exit signs are usually required to be placed along the path of egress to show people where they need to go.  Doors located in the path of egress are referred to as “egress doors” and are almost always required to swing in the same direction as the path of egress.

As previously discussed, while exterior doors are rarely fire rated, interior doors are often fire rated.  Fire rated doors need to be positively latched in the event of a fire, so if you are using exit devices with electric latch retraction, the latches must be extended in the event of a fire; if you are using fire rated electric strikes, they must be locked in the event of a fire.  Usually this is achieved (in both cases) through the use of a fire alarm interface relay, which is a device by which the fire alarm system can interrupt power to locking devices in the event of a fire.

Stairwell doors are unique in that not only are they fire rated – so they must be positively latched in the event of a fire – they must also usually be unlocked in the event of a fire.  This is all fine and good if locking the stairwell doors is not required, (passage function mortise or Grade 1 cylindrical locks or fire rated exit devices with passage function trim will all do the job just fine) but when access control is required the range of choices is limited.  Electric strikes cannot be used, but electrified fail safe mortise or cylindrical locks can be used as well as electrified fail safe exit device trim.  All such devices must be automatically unlocked by the fire alarm system as described above.

Composition

What is your door made of?  Doors made of different materials often require different kinds of hardware.

  • If a magnet is attracted to your door, then it is a hollow metal door.  Hollow metal doors are perhaps the most popular doors to be used in commercial facilities.
  • Is your door mostly glass with a relatively slim frame around it?  Then it is probably an aluminum storefront door.
  • Wooden doors are also common and used in all of the applications as hollow metal doors.
  • FRP (Fiber Reinforced Plastic) doors are also becoming more popular all the time, and they are available in different configurations to accommodate almost every application.

Lock Prep

Commercial hollow metal or wood doors are usually prepped one of three ways:

  • Blank – no prep whatsoever
  • 86 Prep – prepared for mortise clock
  • 161 Prep – prepared for cylindrical lock, 2-3/4 inch backset, with ANSI standard 4-7/8 inch tall strike

BacksetThe 161 Prep is a prep for a cylindrical lock.  It can be identified by a 2-1/8 inch diameter hole (called the ‘bore’) centered 2-3/4 inches from the edge of the door and a an opening in the edge of the door that is 2-1/4 inches high by 1-1/8 inches wide.  Centered in this edge prep is a 1-inch diameter hole for the latch.   The distance between the edge of the door and he centerline of the door is called the “backset.”

Most Grade 1 cylindrical lever locks have through-bolts that must be drilled outside the diameter of the 2-1/8 inch hole.  Then it is said that the lockset has through-bolts “outside the prep.”

Aluminum and glass storefront doors have specialized hardware.  Most hardware designed for other kinds of doors will not fit on a narrow stile storefront door, but may fit on a wide stile door.  Aluminum doors most commonly come with a prep for an Adams Rite MS1850S deadbolt.  Adams Rite offers other locks and exit devices that fit this same prep.

Locks

Lock Functions

There are many, many lock functions, but here are a few of the most common.  Common lock functions often correspond to door use or location.  Office doors are usually equipped with office function locks:  locks that can be locked from the outside only by key, but can be locked from the inside by pushbutton or turn knob.   Classroom doors get classroom or classroom security function locks.  Single occupant bathrooms get privacy locks and/or occupancy indicator deadbolts.  Janitors’ closets and storerooms are fitted with storeroom function locks.  Non-locking doors get passage function locks:  locks that are always unlocked from both sides.

Wherever you use an electric strike you will probably also use a storeroom function lock.  You will also need a door closer.

In order to comply with ADA requirements, all locks should be equipped with lever handles.  Check with your local building inspector to make sure your choice of lever design is ADA compliant.

Keying

Even if you intend to use electronic access control, your locks will probably still have keys.   To determine which key will open which door, determine who will have access to that door.  The more doors that are opened by the same key, the greater the convenience and the greater the security risk.  Therefore key control must go hand in hand with keying.

If you are only using keys for access and have an existing master key system, it is helpful to have access to the bitting list for your system.  If you do not have it on site, perhaps the locksmith who created the system still has it.  With the bitting list a locksmith can determine whether it is possible to add more locks (more changes, s/he would say) to your system and may be able to safely add changes without creating keys that open more than one door in the system.

There are software programs on the market that create master key systems, but unless you are a locksmith I suggest you leave the keying (and the software) to a locksmith.

If you are creating a new group within an existing system – for example, you are head of maintenance at a small college that is opening a new department within an existing building – and you already have an institution-wide master key system in place, you may want to create a sub-master key that opens all the doors within this new group.  This will be convenient, but remember to keep such a key in a safe place and be careful who you give it to.  This is the essence of key control.
In addition to your new sub-master key, it is wise to key doors alike only when they will always be opened by the same people.  For example your utility closets may only be opened by your maintenance staff, so you may want to key all your utility closets alike.  They will also be accessible via the sub-master and the existing master key.

The important principle here is to realize that you put locks on door to keep people out and you give keys to people so that they can get in.  Key control is making sure the people you want to keep out don’t get the keys and the people you want to let in do.

In addition to keying software, key control software is also available.  Usually, however, if you are creating a small group of, say, 25 doors or less, a simple spreadsheet or even a hand written ledger may be all you need to keep track of your keys.

Access Control

The same principle applies to access control, but the practice of access control is much simpler.  In access control you simply give everyone their own unique credential (magnetic stripe card, proximity card, pin code, etc.).  The access control system keeps track of who accesses which door and when.   You can have one credential open all the locks, but then you have to be careful who you give that credential to.  It acts as your master key.

One advantage of access control is that you will be able to tell who accesses what door and when.  If your project will house sensitive or expensive equipment or intellectual property, you may want the ability to keep records of the movements of people who have access to it.

Another advantage of access control is that you can change who has access to a given door without changing the lock.  Often one can add and delete users from any given door right from one’s desk using the access control system software.

Other Door Hardware

Hinges

There are many, many varieties of hinges.  On small projects I have found that the hinges and doors are often reused if they are in good working condition.  But hinges must be replaced if they are damaged or worn.  Take the time to identify and learn about the hinges on your job.

The overwhelming majority of hinges in the United States are one size, finish and configuration.  They are 4-1/2 inches high and 4-1/2 inches wide; they have ball bearings to reduce friction and increase life; and, by far, most of them are satin chrome plated steel.  They are full mortise hinges because both leaves are cut in:  one is cut (or mortised) into the frame and one is cut into the door.  These are called “butt hinges,” I’m not sure why.

The correct way to measure a hinge is [height] by [width] as shown in the illustration below:

HingeMeasure

You can check out my full article on hinges here.

Door Closers

I write of door closers at length elsewhere.

For your small commercial project you need to know how you want each door closer to behave on each door.  There are some limitations.  For example, you cannot have door closers with hold-open arms on fire rated doors unless they are electric and so can be released by the fire alarm.   If you restrict your use of hold-open hardware to exterior doors you will be completely safe from code violations, but this is not always practical.   Remember, therefore, that hold open hardware on fire doors must be releasable by the fire alarm panel and you should be okay.

As mentioned earlier, the reveal dimension of your header can affect whether or not you can use a closer mounted in top jamb configuration.  Other opening idiosyncrasies – arch top doors, transoms, odd widths – can also affect your choice of door closer.  My best advice is to take good measurements and consult with your qualified hardware installer.

Auto Operators

Also called power operators or automatic door openers, auto operators are growing more in demand every year as we move toward a more inclusive society.   These devices are potentially dangerous if specified or installed incorrectly.  Therefore if you need an automatic door opener your best bet is to hire an automatic door company.   Your second best bet is to have your qualified hardware installer choose and install a low energy power operator that is designed to exert less force, thereby presenting less of a potential hazard.

Auxiliary / Decorative Hardware

On most openings one finds a door stop.   The purpose of the door stop is usually to prevent the hardware on the door from hitting and damaging the wall, but sometimes it is used to prevent the door from opening too far.   There is a great variety of door stops designed to accommodate different conditions.

In addition to door stops there may be kick plates or other protection plates, door viewers, lock guards, surface bolts, metal numerals or letters, mail slots, or various and sundry other hardware items to serve a myriad of purposes.  Most of these items are fairly self explanatory.

Kick plates, armor plates and protection plates are measured like hinges:  height x width.

Review 

Once you have assembled the information and organized it by door number, review it as best you can for accuracy and completeness.   You can always go back and check if you have to.

  • Door dimensions, handing, composition and location
  • Whether or not doors are fire rated or non-fire rated
  • List of existing hardware and/or lock preps
  • Lock functions, design, finish and keying (and access control)
  • Hinge sizes and finishes
  • Door closer functions and finishes
  • Auto operators, if any
  • Auxiliary hardware required

Armed with this information you will be on good footing when you discuss the job with your qualified door hardware installer.  Best of luck with your project.

Identifying Door Hardware Finishes

There are many sources on the Internet that provide guides to door hardware finishes with brief descriptions. In this article I describe the most common finishes in more detail to try to make it easier for hardware specifiers and installers to identify finishes in the field.

The ‘finish’ of a piece of door hardware refers to its color and the degree to which it reflects light. These qualities are defined (more or less) by alphanumeric codes called ‘finish codes.’ I say ‘more or less’ because often there are noticeable differences in finish between pieces of hardware by different manufacturers and sometimes between pieces manufactured in the same factory at the same time. This is especially true of “living” finishes – that is, finishes that are designed to age naturally over time – such as US10B, oil rubbed bronze. More about that later.

In the United States there are two finish code systems: U.S. finishes, created by ANSI (American National Standards Institute) and BHMA finish codes (Builders Hardware Manufacturers Association). U.S. finishes describe only the color whereas BHMA finish codes describe both color and base material. The most notable exceptions to this rule are US32, polished stainless steel, and US32D, satin stainless steel.  These U.S. finishes describe both the finish and the base material.  The corresponding BHMA finish codes would be 629 for polished stainless and 630 for satin.

BHMA finish codes are different for different base metals. For example, BHMA 626 is satin chrome plated brass whereas BHMA 652 is satin chrome plated steel. Base metal can be important when choosing hinges for interior vs. exterior use. BHMA 632 (polished brass plated steel) finished hinges will rust whereas BHMA 605 (polished solid brass) finished hinges will not. Hinges in 632 finish are much less expensive than those in 605 finish, and it is absolutely fine to use them in dry interior environments.

A “polished” (or “bright”) finish is one that has been buffed until it reflects like a mirror.  If you can see your reflection clearly in your doorknob or kick plate, for example, it is safe to say that it is a polished finish.  I have included a raw photograph of a polished finish in the lower right hand corner of the photo below.

The opposite of a polished finish is a satin finish. You cannot see your reflection in a piece of hardware with a satin finish without quite a bit of imagination.

Below is a chart showing the most common finishes with their U.S. and BHMA finish codes:

Common ANSI (US) and BHMA finishes and finish codes.

Common ANSI (US) and BHMA finishes and finish codes.

 

Notice there are several finishes that might be described as slightly luminous shades of gray. Right here is where the most trouble is with finishes. In particular there are US15 (BHMA 619 or 646) satin nickel plated, US15A (BHMA 620 or 647) antique nickel plated, US26D (BHMA 626 or 652) satin chrome and US32D (BHMA 630) satin stainless steel. There are subtle differences between them. Of these four, US26D is the lightest shade of gray whereas US15A is the darkest. In between are US15 and US32D, and between these two US32D is just slightly darker. To the untrained (or uncaring) eye these four finishes may appear exactly the same, but all it takes is the installation of an antique nickel lever on a door right next to another door that has a satin nickel lever on it to earn somebody an expensive paperweight.

The other finishes are much more easily distinguishable:

  • US9 (BHMA 611 or 637) bright bronze (not shown above) is not a very common finish, but easy to identify. It’s like a copper penny where the Lincoln’s face has been buffed clean off, and now you can clearly see your face instead his reflected in the penny.
  • US10 (BHMA 612 or 639) satin bronze is a copper color, like a new penny, buffed to a satin finish, does not reflect images clearly.
  • US10A (BHMA 616 or 643) brown with a little red in it. Not commonly used in locks, but common in hinges. Not reflective. A “living” finish.
  • US10B (BHMA 613 or 640) plain brown, not reflective. A “living” finish.
  • US26 (BHMA 625 or 651) polished (or bright) chrome. Silver in color, you can see yourself clearly reflected.
  • US3 (BHMA 605 or 632) polished (or bright) brass. Gold in color, you can see yourself clearly reflected.
  • US4 (BHMA 606 or 633) satin brass. The same yellow gold color as polished brass, but does not reflect images clearly.
  • US5 (BHMA 609) antique brass. Same as satin brass except with black accents.
  • US32 (BHMA 629) polished stainless steel. This mirror finish is similar to US26 above, but just slightly darker. As with satin chrome and satin stainless, it can be difficult to distinguish between polished chrome and polished stainless. If it is an exterior application or a corrosive environment it is probably stainless.
  • USP (BHMA 600) prime coat over steel.  Hinge has been painted with gray primer and is ready to paint.

Using a Camera to Identify Door Hardware Finishes

As you can see by my photo of a manufacturer’s sample of US26 bright chrome at right (and in the photo above), it is very hard to tell reflectivewhat the finish is by looking at this photo.  This is because it has a mirror-like finish that reflects back all the colors that are in the room.  Yet actually most finishes have a degree of reflectivity that will show up in photos.  All in all it is a lot easier to identify the finish yourself on the job while looking at finish samples than to send a photo of the item to, for example, your hardware dealer for identification.  Most established door hardware manufacturers have brochures that accurate depict an assortment of finishes.  Using their pictures to identify the finish is like having access to their professional photographer.  Why would you try to use your phone camera when there is a professional photographer at your disposal?

About “Living” Finishes

Living finishes are finishes that are designed to age naturally over time, such as US10B, oil rubbed bronze. The oil rubbed bronze finish seems to come out of every factory a little differently each time. Often on a large job done in US10B finish you will find that all of the hardware is, in fact, the same finish, yet it is all slightly different in color. This is not usually avoidable. Also individual hardware items with living finishes will age differently over time depending on use and slight differences in how the finish was applied at the factory. US10B hardware that has been around a while may end up looking like bright bronze, satin bronze, satin brass or antique brass.

 

The Scary Spec

hellspec

If you are a door hardware professional you’ve seen them: the stupid specification, the dumb door schedule and the hardware take-off from hell. If I had a penny for every dollar I’ve saved customers by debunking bad specs, I’d probably be a gazillionaire today.

Where do they come from? There are a couple of sources. One is software problems – i.e. bad software or architects who don’t know how to use their software. Another is ignorant or incompetent architects. A third is inept or misinformed hardware consultants. However, what really allows the bad hardware spec to go forward is lack of communication.

Dysfunctional Software, Architect or Industry?

I was working with a systems integration company on delayed egress systems for schools in St. Louis. The salesman from the integrator sent me the door schedule from the architect and right away I noticed that there were two electromagnetic locks on each door. “This spec won’t work,” I said to myself, but when I called the salesman, he replied in the typical attention-deficit manner of many salesmen, “Listen, I don’t care, just price it out and send me the quote. The bid goes up in an hour.”

Since Murphy’s Law was written by a locksmith named Murphy with the hardware industry in mind, this fool of a salesman won the bid and the project manager and I were left to figure out what the architect may have meant. I spent some time trying to devise a system of relays that would allow the redundant locks specified for every door to work together more or less in compliance with life safety and building codes, but the more I tried to make the cockamamie conglomeration of hardware fit the application, the more I realized I needed to speak to the architect and find out what he had in mind.

Perhaps because the project manager was afraid that my company – a hardware distribution company – would sell to his customer direct, he would not give me the architect’s contact info. Luckily, as I had him fax me more and more documents to try to figure the spec out, he finally sent me one with the contact info on it by accident.

When I called the architect it turned out that the new software he was using did not delete the old hardware when he added the new hardware. Half the hardware was on the spec by accident. After the architect removed the redundant hardware (with a little help from me) the spec was rewritten and the job went forward with few problems, all because of a little communication.

Electrifying

A project manager called me to get a quote on about twenty fail safe electric strikes. He said that he needed fail safe because the doors needed to be unlocked in the event of a fire to comply with life safety code. So, naturally, I asked the obvious question: “Are these fire doors?”

“Yes, they are,” he replied.

“Then the strikes must be fail secure, not fail safe,” I said.

“But they can’t,” he countered. “The Fire Marshall said they had to be unlocked if the fire alarm went off.”

“Ah,” I said. “Are these stairwell doors?”

“Yes!” he said. “They are all stairwell doors.”

Of course, stairwell doors are fire rated because a stairwell tends to become a chimney in a fire. So they must remain positively latched. Yet, because they are stairwell doors, life safety code dictates that at least some of them (it varies by locality) must be also unlocked.

There are two ways to lock a fire door so that it is both positively latched and unlocked in the event of a fire emergency. It can be done with an electric lock or with an electromagnetic lock; it cannot be done with an electric strike because an electric strike works by releasing the latch bolt of the lock. If the latch bolt is released, the door is not positively latched.

In this small conversation I may have saved the project manager’s company several thousand dollars or maybe more. If, for example, I had asked no questions, but simply quoted and subsequently sold him the electric strikes he asked for, and then his technicians installed them, and then the Fire Marshall demanded they all be removed, at the very least the strikes would have been non-returnable. At worst, the Fire Marshall might have demanded that they replace every door frame they cut to install an electric strike, because the letter of the building code says that a fire rated door frame can only be altered in a fire rated door shop. In short, I saved that project manager from a potential hardware fiasco.

In conclusion, the hardware you choose as an architect, project manager or security professional is no joke. So take your time, and take it seriously. A moment of careful consideration can avoid major problems. Remember, when it comes to hardware, “Whatever can go wrong will go wrong.”

Quest for the 24-Inch Exit Device with Electric Latch Retraction

Yale7100I had a lot of fun recently trying to meet a customer’s requirement for a 4-foot by 7-foot pair of doors in a hospital that needed to be fire rated and automated.   I found that Corbin and Yale (sister companies whose exit devices are almost identical) offer fire rated surface vertical rod exit devices with electric latch retraction that meet this need.   The installer will be able to put some kind of little power operator on each 24-inch leaf of this four foot pair and cram two fire rated surface vertical rod devices onto these same narrow leaves.  Doubtless it will look odd, but it will work.

Admittedly the whole idea is a bit dubious.  True, by having both leaves opened simultaneously by power operators will provide amply more than the minimum 32-inch clearance demanded by the American Disabilities act, but if anyone manually opens either leaf it certainly will not.

Sargent and Von Duprin offer 24-inch fire rated exit devices, but neither offer them with electric latch retraction.   It is unfortunately necessary to call these companies’ tech support lines in order to verify this information, since their price lists both show 24-inch possibilities without disclaiming the electric latch retraction option.  Neither the Sargent nor the Von Duprin has a note to say the 24-inch device is not available with electric latch retraction that I could see; if that is in fact the case, the buyer is left to beware the exit device order that bounces back because it was ordered with options that are mutually incompatible.

It’s good advice anyway to always call the manufacturer’s tech support whenever there is a question.  Waiting on hold is a lot better than storing thousand-dollar exit devices that didn’t work out on the job.

Note:  A reader named Rick writes in with this about Sargent electric latch retraction:  “Tom, I just stumbled across your site this evening, while doing a search for Fail Secure mag locks of all things (IR says there is one).  But I saw your latest article on latch retraction units and had to clarify the Sargent restrictions. These can be found within the catalog pages, specifically the page showing the 56 option (toward the back). It says:

         MinimumDoorWidths:
              -Wide Stile Door 28″
              – Narrow Stile Door 26″
Thank you, Rick, for this bit of info.  I should add that it is always good to check all the literature at your disposal for any information you are looking for.  Some manufacturers have more detail in their price list than in their catalog, and others vice versa.  Thanks again.


The Double Door Rim Strike – A.K.A. “The Pocket Ripper”

pocketripperOne of the hallmarks of bad hardware choices is the “pocket ripper” strike, used on a pair of doors when there is an inactive leaf with flush bolts or a vertical rod exit device and an active leaf with a rim exit device. Whenever I see this I think, “Cheap bastard,” because the only reason for this half fast solution is money and the desire not to spend it on doing the job right.

This lovely piece of hardware earned the nickname, “pocket ripper,” but hanging into the opening at a convenient height to catch the front pocket of a pair of trousers, resulting in egregious damage to said pocket and colorful language on the part of the victim.

What is the right way to secure a pair of doors? Vertical rod exit devices are the best. My second choice would be a mortise exit device with an open back strike and a vertical rod exit device on the inactive leaf. My third choice would be a mortise exit device with flush bolts on the inactive leaf.

Below are a couple of examples of the ‘pocket ripper.’   On the left is the classic Von Duprin 1609 strike and on the right an example from Ingersoll Rand in Europe.  The European version looks like it has better manners.

In the center we have the Hager 4921 strike that really looks like it could take out more than just a pocket if you catch it the wrong way.

image001image002hager

 

 

 

In addition, I find that often the rim latch stops dead before latching on the strike.  Also, depending on how you install the rim device, the latch may drag across the edge of the other leaf, scraping an ugly divot over time.  Yes, all in all a hardware choice to be avoided if you can.

 

Securitech Lexi Electrified Exit Device Trim

Great Problem Solver

The Securitech Lexi series retrofit exit device trim is available with a variety of back plates and adapters that allow it to be used with most major brands, including many surface vertical rod and concealed vertical rod exit devices.  Compatibility with a variety of vertical rod devices is a major plus.

I mean, anybody can electrify a rim exit device by simply installing an electric strike.  However, while it is possible to install an electric strike on a vertical rod device it rarely brings a good result.  First of all, in order to use an electric strike you have to first lose the bottom rod.  That just leaves one latch at the top of the door to provide all the security.  If it is a tall door or a flexible door – like an aluminum storefront door – you can pull the bottom open several inches with just that top latch holding it.  Add a little time and a little hinge sag and pretty soon you have no security at all.

The other solution is electric latch retraction, or electric latch pullback, as some manufacturers call it:  relatively expensive compared with a Lexi trim.  Also, electric latch retraction is a fail secure only solution when locking trim is used and therefore may be inapplicable to fail safe installs such as stairwells, unless passage function (always unlocked) trims are used.

I notice that right out of the box the Lexi is very self contained.  Other than a tiny box containing mounting screws, tailpiece operators, and a cylinder collar and cam, what you see is pretty much what you get.  It’s pretty hefty for its size – it is designed on the slim side so as to be usable on narrow stile as well as hollow metal or wood doors.   This does mean that the installer may have to be a little creative when replacing a larger exit device trim with the Lexi.

Installation instructions are easy to follow and short – only four pages, including the template. Something I would have liked to see in the instructions, but didn’t, was current draw.  If I am installing one of these, the number of amps it draws are not going to matter much to me.  But if I am installing twenty of them and want a centralized power source, now it’s an issue.  Yet it isn’t anything that an experienced low voltage specialist with a ammeter can’t find out in two seconds.

One of the great innovations I noticed right away is the rotation restriction clip that allows the installer to customize tailpiece rotation to the exit device.  I do not think that this is handled better by any other manufacturer.  Correct degree of rotation often determines whether a trim will work or not, and to have a trim that has degree of rotation so easily selectable is damn nice.

As mentioned in the sales literature, since Securitech’s Lexi trim is compatible with so many exit devices, if you have a facility with different brands of exit devices dispersed throughout, you can install access control and unify the exterior appearance at the same time.  And in addition to being versatile it is also durable.  Forcing the lever only causes its internal clutch to break away, and it can easily be set right by rotating it back the other way.

All in all the Securitech Lexi trim seems to be a well built, versatile problem solver.  I think you’ll find it useful in many access control installations.

Full Height Housings for Electromagnetic Locks

Maglocks are generally great problems solvers, but they also create problems.  One significant problem is the fact that they are usually installed on the header, and therefore only lock the top of the door.  If the only lock on the door is a magnetic lock and the door is fairly flexible, a reasonably strong person may be able to pull the bottom of the door open four or more inches.

One solution to this problem is to install mags top and bottom on the lock side leg of the frame rather than on the header.  If you have an opening that measures at least 35 inches from stop to stop and you use magnets that are three inches wide or less, you can install mags in the opening and still have 32 inches clear to comply with the American Disabilities Act.  The problem with this idea is that no matter where they are installed in the opening, users are likely to bump into them with some body part or other.

Enter the full height housing for electromagnetic locks, an enclosure that houses one or two maglocks and mounts on the stop of the lock side leg of the door jamb as illustrated below.

The illustration above is one I prepared for a customer so that I could order a custom built, full height housing for two electromagnetic locks.  The drawing shows the dimensions I requested as indicated by the lines with arrows at both ends:  height of the opening from threshold to header stop; distance from header stop to center line of upper maglock prep; distance from threshold to center line of lower mag prep; and distance between the center lines of the mag preps.

Provided the opening is at least 35 inches clear and the housing is no more than three inches wide, the opening will still comply with ADA after the full height housing system is installed.

 

Multi-function Doorways, Part One

As seen in Doors and Hardware Magazine.

Whenever something is invented, humans find more uses for it.  This is certainly true for door automation and electric locking.  It was not long after people realized a door could be unlocked remotely using an electric strike and a door could be opened automatically using a power operator (automatic door opener) that they began using these devices together.   Of course this combination of devices was soon interfaced with intercoms.  Exit devices with electric latch retraction and electromagnetic locks were thrown into the mix, as well as access control, delayed egress and/or security interlock systems.  Any of these systems alone is sufficient to complicate an installation, but when you start to use several on one opening, that’s when things really start to get interesting.

A hospital can be one of the best places to run into a doorway that needs to perform many functions (pun intended).  Hospitals seem to have more varied reasons to keep different people out at different times, or to let them in or out by different means.  In addition to standard life safety and security issues, hospitals also have to anticipate the needs of patients who may be under the influence of medication and/or mental disorders and/or have physical limitations.  Some patients must be kept inside for their own safety while all patients must be able to exit swiftly and safely in the event of a fire.

Let’s use as an example a hospital emergency ward entrance used primarily by ambulance drivers.  The hospital wants only ambulance personnel and the security guard  to be able to activate the power operator, and to control access by use of a remote switch operated by the security guard  for the general public and an access code by hospital employees (other than ambulance personnel).

Since it is a pair of doors, concealed vertical rod exit devices are the most efficient, safe and secure way to lock them and provide reliable free egress in the event of an emergency.  However, since there is a power operator involved, these devices must be equipped with electric latch retraction; and since use of the power operator was to be limited, a second electric means of opening the door would be required.

A simple way to solve the problem of the second means of unlocking is by using electrified exit device lever trim with one of the concealed vertical rod exit devices.  Persons not requiring the power operator can get in by using the access control, or the security guard  can “buzz” them in using one of two remote buttons.  Because there will be two means of unlocking the door electrically, the security guard  will need a small desk unit with two buttons:  one that activates the power operator and electric latch retraction and one that activates the electric exit device trim.

Below is an amateur wiring diagram (made by me) of how, basically, the system works.

Central to the concept is an access control device with two relays and a request to exit input.  This allows several of the connections to be made through the access control system.  If the access control system on site does not provide more than one relay, the same functions can be accomplished by using additional relays in the power supply.

The system as shown in my illustration above works like this:

Ambulance personnel activate the power operator using the access control system.  The access control system signals the power operator via contact closure in Relay #1.  The power operator triggers the relay in the power supply to retract the latches of the exit devices, then opens the door.

Other authorized hospital personnel use the access control system to unlock the lever trim.  The access control system changes the state of Relay #2, triggering the relay in the power supply to unlock the trim.  They turn the lever, pull the door open and walk in.

Injured people arrive on foot at the Emergency Room entrance.  The Security Guard sees them (or is notified by intercom, not shown) and lets them in by pressing the red button, activating the power operator, or by pressing the green button that unlocks the exit device trim.

There exist many possible variations of this system.  Knowledge of access control systems and door hardware are required, but the most important principal in play is the use of contact closure to signal multiple devices.



Tags