You are currently browsing the Door Hardware Genius posts tagged: panic hardware


PS900 Series Schlage Electronics and Von Duprin Power Supplies Demystified

Von Duprin and Schlage Electronics are divisions of Ingersoll Rand. Both are major manufacturers of power supplies for use with electric locking systems and access control. As of January 1st, 2011, Ingersoll Rand discontinued two of their power supply product lines, the PS800 series Von Duprin and the Schlage Electronics 500 series, and merged them into the new PS900 series.

A split in power supply branding may or may not remain, depending on what document you are looking at, but whether they say they are Schlage or Von Duprin, they are all the same PS900 series.

Here is the lineup:

PS902 – 2 Amp output at 12 or 24VDC, field selectable

Compatible with these option boards:

  • 900-BBK: Battery Backup – back up power in case of power outage, includes batteries
  • 900-FA: Fire Alarm – relay for interface with fire alarm panel  – wires to main board
  • 900-2Q: 2 Relay QEL control Board – to run 2 Von Duprin QEL devices
  • 900-4R: 4 Relay Output Board – four relay outputs to operate 4 electric locking devices, not QEL or EL
  • 900-4RL: 4 Relay Logic Board – for man trap or security interlock systems or up to 4 QEL devices
  • 900-8F: Fused 8 Zone Distribution Board – 8 outputs, fused for circuit protection
  • 900-8P: PTC 8 Zone Distribution Board – 8 outputs, circuit breaker protected

PS902 can accommodate 1 of the above option boards in addition to the 900-FA option and battery backup.

For use with electric locks and with Von Duprin Quiet Electric Latch retraction (QEL) exit devices, but NOT with Von Duprin electric latch retraction (EL) exit devices.

PS904 – 4 Amp output at 12 or 24VDC, field selectable

Compatible with these option boards:

  • 900-BBK: Battery Backup – back up power in case of power outage, includes batteries
  • 900-FA: Fire Alarm – relay for interface with fire alarm panel  – wires to main board
  • 900-2Q: 2 Relay QEL control Board – to run 2 Von Duprin QEL devices
  • 900-4R: 4 Relay Output Board – four relay outputs to operate 4 electric locking devices, not QEL or EL
  • 900-4RL: 4 Relay Logic Board – for man trap or security interlock systems
  • 900-8F: Fused 8 Zone Distribution Board – 8 outputs, fused for circuit protection
  • 900-8P: PTC 8 Zone Distribution Board – 8 outputs, circuit breaker protected

PS904 can accommodate up to 2 option boards and battery back up.

Note:  no plug-in for fire alarm relay on main board.  900-FA is only usable with the PS904 if used with an option board.

For use with electric locks and with Von Duprin Quiet Electric Latch retraction (QEL) exit devices, but NOT with Von Duprin electric latch retraction (EL) exit devices.

PS906 – 6 Amp output at 12 or 24VDC, field selectable

Compatible with these option boards:

  • 900-BBK: Battery Backup – back up power in case of power outage, includes batteries
  • 900-FA: Fire Alarm – relay for interface with fire alarm panel  – wires to main board
  • 900-2Q: 2 Relay QEL control Board – to run 2 Von Duprin QEL devices
  • 900-2RS: 2 Relay EL Control Board – to run up to 2 Von Duprin EL devices
  • 900-4R: 4 Relay Output Board – four relay outputs to operate 4 electric locking devices, not QEL or EL
  • 900-4RL: 4 Relay Logic Board – for man trap or security interlock systems
  • 900-8F: Fused 8 Zone Distribution Board – 8 outputs, fused for circuit protection
  • 900-8P: PTC 8 Zone Distribution Board – 8 outputs, circuit breaker protected

PS906 can accommodate up to 3 option boards, fire alarm interface (with option board) and battery back up.

For use with electric locks and with up to 6 Von Duprin Quiet Electric Latch retraction (QEL) exit devices, but NOT with Von Duprin electric latch retraction (EL) exit devices.

PS914 – 4 Amp output at 12 or 24VDC, field selectable

Compatible with these option boards:

  • 900-BBK: Battery Backup – back up power in case of power outage, includes batteries
  • 900-FA: Fire Alarm – relay for interface with fire alarm panel  – wires to main board
  • 900-2Q: 2 Relay QEL control Board – to run 2 Von Duprin QEL devices
  • 900-2RS: 2 Relay EL control Board – to run up to 2 Von Duprin EL devices
  • 900-4R: 4 Relay Output Board – four relay outputs to operate 4 electric locking devices, not QEL or EL
  • 900-4RL: 4 Relay Logic Board – for man trap or security interlock systems
  • 900-8F: Fused 8 Zone Distribution Board – 8 outputs, fused for circuit protection
  • 900-8P: PTC 8 Zone Distribution Board – 8 outputs, circuit breaker protected

PS914 can accommodate 2 of the above option boards, plus fire alarm interface (on one of the boards) and battery back up.

Capable of powering:

  • Up to 4 Electric Latch retraction (EL) exit devices with 900-4RL board
  • Up to 2 EL devices with 900-2RS board
  • Up to 4 Quiet Electric Latch retraction (QEL) exit devices
  • Up to 4 Chexit (CX) delayed egress exit devices off the main board (use 900-8FA combination board if Fire Alarm relay is required)
  • Electric locks or strikes

 

Ordering Tips:

PS-914 is a 4 Amp power supply that is double the capacity of the old PS873, however, from my conversation with IR tech support, their feeling is that it is prudent to power no more than 4 EL devices per PS-914.  Theoretically the power supply could support as many as 8 EL devices however this presents the challenge of timing the relays so that no two can change states at the same time.  If two EL devices are powered up simultaneously the PS-914 could be damaged.

None of the PS900 series power supplies are a drop-in replacement for their predecessors, and the old and new option boards are not cross-compatible with the old and new power supplies.  Therefore, replacing old power supplies with new can present a rewiring challenge.

Ordering back-up batteries can be a little tricky, since they have very similar part numbers for the batteries, the charging circuit board, and a set that includes the board and the batteries.

  • 900-BAT – Pair of batteries only
  • 900-BB – Battery back up board only
  • 900-BBK – Power battery back up kit, board and batteries

 

 

Low Voltage Detective Work

 

Finding the Current Drop

 

As electric locking systems become increasingly complicated, troubleshooting these systems has also become more complex.  Yet certain basic principles always apply.

Case in point, a customer had access control on a stairwell door using a fire rated mortise exit device with an electrified mortise lock.  The solenoid in the mortise lock had burned out twice and the third one, newly installed, was already too hot to touch.  Granted, a solenoid operated fail safe device used in a continuous duty application will get warm, but it should not get too hot to touch.  So they called me to help them figure out what was going on.

To find the problem, I first listed the possibilities:

  1. They had gotten three defective solenoids in a row
  2. The power supplied is the wrong voltage – if the voltage was either too high or low, that would cause the solenoid to heat up
  3. The current supplied is inadequate – the solenoid used 330mA.  If it were being supplied with only 150mA, for example, the solenoid would heat up.

We determined that 27 volts DC was available at the door to power the 24 volts DC solenoid – perfectly acceptable – and we all felt that it was rather unlikely that they had received three defective solenoids in a row.  So that left current drop.  Where was the current going?  What was preventing it from getting the current it needed?

The access control tech on site could not determine whether the solenoid was getting enough current at the door by using a meter (for whatever reason) so we traced the current back through the line.

The power supply was a 6 amp, 24 volts DC power supply that had an output board with 8 fused outputs.  If all were in use, then a max of 750mA should be available from each output, provided they all were carrying the same amperage load.  We determined that four of the outputs were being used:  three were used to power electric strikes at 300mA and one was used to power the electric mortise exit device at 330mA.  The sum of the current draw for all devices attached to the power supply was therefore about 1.2 amps – well within the power supply’s capacity.  Therefore the power supply size was not the problem.  The technician measured the output from the contacts that were connected to the mortise lock and found that they were outputting correct voltage and current.  Therefore the output board was not the problem.

Assured by the technician that the wire run between the power supply and the mortise lock was less than 100 feet and that 18 gauge wire was used, I knew that the wire run was not the problem.  I asked how power got from the door frame through the door and into the mortise lock.  The technician responded that power transfer was accomplished by use on an electric hinge.

Typical wire gauge in an electric hinge is 24 gauge – a thin wire to be sure, but since power only needs travel a few inches through it, hinge wire gauge is usually not a problem.  But this electric hinge had its own 3-foot wire lead threaded through a raceway in the door to the mortise lock.  Whereas a few inches of 24 gauge wire might not be a problem, I reasoned, three feet of it might be a problem.  We talked about it briefly and then agreed that they would give it a try.

To my dismay, they called back two hours later – after they had replaced the wire running through the door with 18 gauge wire and let the mortise lock run on it for a while – and let me know that this did not work either.

The answer finally came when I asked how the electric mortise lock was connected to access control and was told there was a controller in a box above the door.  The controller used a form C relay to turn the electric mortise lock on and off.  I suggested that the technicians check the relay to make sure it was working properly.  When they did they discovered that the electric mortise lock had been connected in series with another device.  This other device – whatever it was – drew enough current to deprive the mortise lock of the current it needed to operate without burning up.  Problem solved.

The moral of the story is that, yes, access control has only gotten more complex as time goes by, but by using simple, logical methods a good technician and figure out and repair most problems.  So stick with it and keep asking questions until you ask the right one.

 

And good luck!

 

 

Exit Device, Panic Hardware and Crash Bar Basics

Introduction

The terms “crash bar”, “panic hardware” and “exit device” all mean the same thing.

Precision Apex 2000 Series Rim Exit Devices by Stanley

Exit devices are used on doors in the path of egress in buildings built to accomodate numbers of people.  Facilities like schools, hospitals, goverment buildings and large residential buildings all use them.  Fire rated exit devices are used on fire rated doors.  Most interior doors that require exit devices, especially stairwell doors, are fire rated.

Fire Rated Exit Devices

Fire rated openings require fire rated exit devices. Fire rated devices are so designated by Underwriters Laboratories. I am told that UL tests them by mounting the device on a fire rated door and setting the door on fire, letting it burn for a time, and then blasting the door full blast with a fire hose. If the door opens, the device fails the test and cannot be sold as a fire rated exit device.

Non-fire-rated exit devices are used mainly on exterior doors.

Dogging Feature

One of the chief differences between a fire rated exit device and a non-fire-rated exit device is called the “dogging” feature. A dogging feature allows the user to “dog the bar down” using a hex wrench or standard key, leaving the door unlatched. Since fire rated devices must always postitively latch, they never have a dogging feature.

Narrow Stile Exit Devices

The term, “lock stile”, refers to the part of a panel door or aluminum-and-glass storefront door onto which an exit device or other lock is installed. Many aluminum storefront doors one encounters in the world have lock stiles only 1-3/4 inches to 2 inches wide. If you need an exit device for such a door, you need an exit device for a narrow stile application.

Exit Device Types

The four main types of exit devices are:

  • Rim
  • Mortise
  • Surface Vertical Rod
  • Concealed Vertical Rod
  • Mid-panel

See examples of rim exit devices at:

http://www.sargentlock.com/products/product_overview.php?item_id=86

and

http://www.sargentlock.com/products/product_overview.php?item_id=57

See an example of a surface vertical rod device at:

http://www.sargentlock.com/products/product_overview.php?item_id=56

See an example of a mortise exit device at:

http://www.sargentlock.com/products/product_overview.php?item_id=59

See an example of a concealed vertical rod exit device at:

http://www.sargentlock.com/products/product_overview.php?item_id=60

Specifying Exit Devices

Exit device choice is based upon the door. As mentioned previously
if the door is fire rated, the exit device must also be fire rated.
If the door is a narrow stile door, an narrow stile application exit
device is required.

In addition, you need to know the width of the door. Exit devices
come in different lengths to accomodate different door widths, so
that the touchpad of the exit device provides the coverage required
by national and local life safety and/or fire code. Door thickness
could also be a factor, especially if you are going to need exit device
trim, that is, a lever, doorknob or thumbpiece that allows people
to unlatch the door and enter from the outside. I will discuss exit
device trim shortly.

For a pair of doors (otherwise known as a double opening, or a set
of double doors), the best choice is usually a surface or concealed
vertical rod exit device. In this case you also need to know the door
height.

It is possible to lock a pair of doors using one rim or mortise exit
device and either a vertical rod exit device or a set of flush bolts,
but these solutions (while perhaps saving a little money) present
other problems. If you use a rim device on the active door, then the
strike (the part you will be mounting on the inactive door to receive
the latch of the rim device) is called quite appropriately a “pocket-ripper”
strike, since it hangs into the opening at pretty much trouser pocket
level. Use of a mortise exit device on the active leaf eliminates
that problem, but it will not work as reliably as would two vertical
rod devices, and would save very little money.

The choice between concealed and surface vertical rod exit devices
should be a simple one. If you are having doors made, have the door
manufacturer install concealed vertical rod exit devices at their
factory. If you are installing a vertical rod device at a job site
on existing doors, then use surface vertical rods.

Concealed vertical rod exit devices are preferable because they are
protected from damage by the door. However, it is an especially skilled
installer who can install one in the field, and at that, it is a time
consuming and difficult job.

Mortise exit devices offer superior durability, and are otherwise
the best choice when retro-fitting an exit device to an existing door
that already has a mortise lock.

Exit Device Trim

The exit device goes on the inside, or interior side of the door,
and exit device trim goes on the outside. Exit device trim is available
in different functions. Below are the most common functions:

  • Key locks and unlocks lever handle or thumbpiece. Trim can be
    left unlocked for periods of time allowing free entry.
  • Key retracts latch. Exit device is always locked from outside,
    entry by key only. Not available on some vertical rod exit devices.
  • Key unlocks trim only while key is inserted. User turns key, operates
    control for entry. Trim is relocked when user removes key.
  • Passage function: trim is always unlocked allowing free entry.
  • Dummy trim: trim is rigid, usable as a handle to pull the door
    open when either the bar is dogged down using the dogging feature
    (see above) or when the latch is retracted or the device released
    by other means.

Exit Device Options

Exit devices are available with a wide variety of options that increase
their functionality. These include:

  • Alarm
  • Touchpad or latchbolt monitoring switches
  • Electric latch retraction
  • Electric dogging
  • Delayed egress

 


Tags